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THE CONSTANTS OF NATURE
A STUDY IN THE EARLY HISTORY OF NATURAL LAW*

The concept of scientific progress is often characterized by saying that
«what was previously considered a constant of nature, in later analysis turns
out to be a variable» (cf. Ketonen [6], pp. 477-480). Although ambiguous,
this maxim nevertheless points towards a number of relevant factors worthy
of a closer examination in the history of science. First of all, it refers to the
Greek idea of knowledge that is based on invariances discovered in nature
and arranged into rational (or, at times, speculative) patterns. Secondly, it
refers implicitly to the perpetual oscillation between permanent features in
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the world-order and permanent features in the formulae that are supposed
to express the natural laws, in the search for such invariances. And finally it
brings into the concept of a scientific paradigm the important methodologi-
cal aspect. For although the history of science is often done in the narrow
sense of recording only the results of science, these to my mind should be
contrasted with the contemporary world-view, scientific terminology, episte-
mological ideal, and analytical means.

While the quest of the cosmological and epistemological context of the
superseded results justifies the philosophical investigations of a past sci-
ence, terminological studies undertaken even in complete linguistic isolation
do not seem to need any justification. But the modern historian of science
still seems to be obliged to give reasons for investigations of past scientific
methods, perhaps due to ancient doxographical traditions, which recorded
the results but omitted the methods of science. Witness the history of the
theory of homocentric spheres, to the beginnings of which this case-study is
devoted.

But since the bearing force behind the ever renewed historical interpre-
tations of past events is the accruing knowledge of the interdependence of the
historical facts and the (improving) historical methods, I do not see any jus-
tification for the separation of the results from the methods in the discus-
sion of other sciences either. True, this combines the interests of the histo-
rian of science with those of the philosopher of science, but I believe that both
parties will gain from this combination.

. The semination of the scientific law of nature.

Supposing there is a clear distinction between an invariable world-order
and an invariable formula that is meant to describe this world-order, what
would the first explicit formulation of a natural law look like?

We need not be concerned here with certain modern schools which tend
to eliminate the whole distinction in favour of an entirely formal approach
to all questions of order, for this was not the Greek way of thinking. Nor do
we need to restrict ourselves to the extreme Parmenidean concept of strict
immutability of the world-order even at the expense of explaining all change
as illusory, although such a view (in a modified form not alien to some mod-
erns) might be expressed by one invariable formula or diagram. Nor do we
need to look for such doctrines alone which assume that the search for truth
presupposes a structural isomorphism between the natural processes and the
method of investigation (like the dialectics of nature and the dialectical
method), or a functional isomorphism between the knower and the known
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(expressed e.g. in the maxim «like knows like» or any such phrase of the Soc-
ratic and Atomist schools).

Nay, we may start with the admission of changes in nature and never-
theless look for invariances in these changes, expressible in clear-cut formu-
lae. Hence not even Zeno (nor Plato in the Parmenides) has fathered the con-
cept of natural law, although he certainly has done much for the growth of
the axiomatic method. What about the Atomists, then? Certainly the Vortex
might have implied a distinction between the concepts of a period (T), an-
gular speed (o = 1 /T) and linear speed (v= rw), although this perhaps nev-
er can be documented. Likewise the concept of the resistance of the inter-
mediary substance was capable of explaining a number of natural phenome-
na, including the Sun’s longitudinal anomaly, the seasonal Mediterranean
North-East winds and the brightness of the celestial objects (excluding the
Moon). And we happen to know that the mathematician Hippocrates tried
to axiomatize the Atomists’ doctrines. But even if we take all these ingredients
together, they do not amount to what might be called a natural law. At best,
the conglomerate could be called a qualitative description; the descriptive
element is simply too strong for the explicit formulation of a natural law, al-
though it might have been judged adequate for the contemporary concept of
world-order. For we can suggest a likely set of axioms which Hippocrates
probably pondered: they have included references to the dualism of void and
matter; a very great, or even infinite number of atoms; a finite number of
kinds of atoms; a very great, or even infinitely great space; a very long, or
even infinitely long duration of time; and so forth. We cannot be very far
from the birth-place of the concept of natural law, however, for Democritus’
auxiliary concepts include the celestial sphere, and there is the suggestion
(VS 2, p. 141) that one of Democritus’ works dealt with «projections of the
armillary sphere on a plane».

It is the last point mentioned, the rational element and geometrical de-
sign exhibited in the world-order, that makes it futile, in my opinicn, to try
to extract any natural laws (in the modern sense of the term) from the Baby-
lonian mathematical astronomy. True, there is an element of prediction and
skilful arithmetical techniques, and the practical results are at times even bet-
ter than the Greek ones. But, as Neugebauer has pointed out ([13], cf. p.
156), the Babylonian methods «nowhere point to an interpretation through a
combination of circular motions or any other mechanical model»!. And the
Mesopotamian mathematical tools, the zigzag and step functions, practical-

1. Neugebauer has also shown that Egyptian mathematics simply was not adequate
for astronomical calculations of any complexity.
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ly exclude such models. I am willing to admit, though, that this is a matter
of taste. One can well consider such revisions of the concept of natural law
as do not presuppose any underlying geometrical models. The idea of star-
ting from «pure facts» might even appeal strongly to a bold spirit, although
in that case the principles of the economy of thought and of the axiomatic
system, and the concept of Protophysik, which have already shown their
fruitfulness in the interpretation of Greek science, perhaps must be jettisoned.
It is not unthinkable, however, that a discovery of one single clay-tablet may
drastically change our views on Babylonian science in these respects.

For the reasons given above, I would suggest that the first «natural
laws» are to be found in Greek science, and in the period after Democritus.
This implies Pythagorean astronomy and mathematics as their conceptual
environment — not Pythagoras’ own teaching and not eve nthe Philolaic sys-
tem, but rather the Platonic—Eudoxan research programme of «saving the
phenomena». The postulates of uniform circular motion and constant angu-
lar velocities, where the diurnal rotation of the sphere of the fixed stars is
the swiftest of all (for these assumptions see Mittelstrass, [10], [11]), adumbra-
te the axiomatic element. The celestial sphere accounts for the geometrical
model. And Plato’s insight into the role of mathematics (for which see Hare.
[3]), together with the Academicians’ and Eudoxus’ contributions to, and re-
finements of, the contemporary (Pythagorean) mathematics, will provide the
mathematical techniques and the formulae for the expression of a «natural
law» 2. T would like to add that although Plato on many grounds can be dis-
cussed separately from Eudoxus, the Timaeus fragmentary astronomy can,
and should, be discussed with reference to Eudoxus’ cosmology. Indeed itwas

2. I would like to remind the reader here that I am using the terms «natural law», «laws
of nature» and «law» in rather a modern sense, without claiming that Plato or Eudoxus ever
used these t e r m s to denote the concept of natural law. On the other hand, I am inclined
to think that, no matter which terms were used, e.g. desmos as in Plato, the concept of the
laws of naturc was properly understood by Plato and Eudoxus. Perhaps I may quote from
a letter of Professor Johathan Hodge, University of Pittsburgh. «My only reservation is
about your phraseology, and concerns the use of the word «law». It may well be that the
Greeks believed, enunciated and used many propositions that would meet any reasonable
criteria for the application of the term «law». However, this would have to be argued for ex-
plicitly, surely, given that they very rarely invoked the legal metaphor in asserting
and specifying orderliness in natural changes. I have not found the literature on «law», «na-
tural law», «law of nature» etc. very helpful in this regard, since it does not really confront
the key issue directly: Were those, like Philo and the Stoics, who first systematically explic-
ated their convictions about nature’s orderliness in terms of the legal, or better, the con-

stitutional analogy, were they simply giving a new gloss on an old doctrine or did they
transform it in the process of rephrasing it?»
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my working hypothesis in [9], which has turned out to be quite fruitful. that
Plato’'s frame of referencewas Eudoxus' theory of the homocentric
spheres. Now Eudoxus’ theory was developed further mainly through gener-
alization. Hence the scientific progress within this paradigm presumably
could be outlined with reference to the maxim about the constants and va-
riables in the explicit formulation of a natural law. On the other hand, if we
start from the later formulations of Eudoxus’ theory — from Torriano in
the XVI Century, through Ptolemy, Hipparchus, Apollonius, Eratosthenes,
Aristotle and Callippus — and return to Eudoxus again, we must ask whether
all later variables are reduced step by step into constants. At least some of
them do reduce. But alterations have been made also with respect to the axio-
matic element, the models, and the computing techniques.

Nonetheless the degeneration of varnables into constants is a useful
measure, since it indicates the accuracy of observation and the length of ob-
servation series. In Ptolemy and Hipparchus the eccentricity of the solar
orbit for instance remains a constant that was included in their laws of na-
ture in the planetary theory. In fact the eccentricity is not a constant, but the
period of its regular change was too long (T = 96000 years) for the ancient
instruments. Again the obliquity of the eclipticwas considered a constant by
the ancients®. Its regular change within certain limits (21939 <<£<24°36") was
not observed, because of the long period (T = 41000 years). And to take a
third example, the motion of the solstitial and equinoctial points was not dis-
covered before Hipparchus, although it can be observed in far shorter periods
(50.26"" p.a. or 1° in about 72 years; yet Ptolemy still used a constant: 1° per
century, Syataxis, vii, 2). This means in fact that no earlier observation se-
ries could be consulted with respect to star-maps, although observations of
the planetary periods (of the Babylonian type, where random errors in the
long run balanced each other) may have suggested rounded-off values.

As we noted, the progress made within the paradigm of the homocen-
tric spheres touched also features other than periods of the theory. Hence we
must look for quite different constants in Eudoxus’ system, too. Changes in
computing techniques, for instance, may have contributed to the gradual
abandoning of the predilection for integers and simple ratios in Pythagorean
mathematics. Of this predilection there are clear indications also in Eudoxus.
And changes in the model (the celestial sphere with 26 nested planetary sphe-
res) and in the axiomatic element, made it possible for Eudoxus’ followers

3. Or do we hear the first voices of doubt in certain explanations of the Milky Way as
the Sun’s «original routes? (AétiusIll 1, 2, cf. Heath [4], pp. 117-118). Professor Holger
Thesleff informs me that if these ideas were Pythagorean, they probably derive from the
mythological ak ousma tradition and not from the «mathematical» sect.
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to abandon certain Eudoxan constants, for instance the equality of the astro-
nomical seasons. Eudoxus’ equalization meant jettisoning Euctemon’s and
Meton’s discoveries of the inequality of the seasons (given in Ars Eudoxi
as 90. 90, 92 and 93 days; the modern values to the nearest whole day are,
92. 89, 90 and 94 days) made some sixty years earlier. And this is just one
example of Eudoxus’ omissions of (direct) observational data, for which he
was criticized even in ancient times. On the other hand, considering Eudo-
xus’ achievements in mathematics (see e.g. [12]) and mathematical geography
(see e.g. [8)), it is not warranted to simply record these omissions, but we
must study to what extent they derive from his method. Likewise we must
study how long observation serieswould have shown that they a r e omissions-
With these broader aspects in mind I shall discuss Eudoxus’ method and the
considerable number of constant values ascribed to his system in tradition.

And lest the more general historical perspectives be forgotten, it 1s as
well to remember the depth of Eudoxus’ mathematical insight®. Dedekind’s
theory of the irrational numbers draws directly on Eudoxus (Eucl. v, Def.
5). and there is a direct line from Eudoxus to Weierstrass, too (cf. Heath
[5] i.. pp. 326-327). Moreover, it is well known that, through Archimedes,
Fudoxus has begun anotner line of development, which leads to integral
calculus. In these directions Eudoxus’ results fertilize much later mathemat-
ical thought, because his methods, the theory of proportion and the method
of exhaustion, were known, too. It is different with Eudoxus' astronomical
results : Schiaparelli [14] had to substitute his own conjectures for Eudoxus’
parameters, since he did not know Fudoxus’ method.

2. On the background of Eudoxus’ method.

I have outlined the reconstruction programme for Eudoxus’ theory in
my studies in the homocentric sphetes [9]. It amounts to claiming that all
previous attempts have failed because they have started from the scattered
parameter values attached to the system. Instead, one should begin with the
reconstruction of Eudoxus’ method and computing techniques and see wheth-
er these parameter values can be obtained through their medium. For va-
rious reasons, which it is unnecessary to repeat here, I suggested that there
indeed is one computing technique which is capable of explaining both the
known unproblematic features of Eudoxus' system and, in addition to these,
its known oddities and idiosyncrasies, e.g. the fictitious deviation postulated

4. For a discussion of Eudoxus' importance in the history of mathematical analysis see
e.g. my paper The Elements of Analysis, Proceedings of the XIVth International Congress
of the History of Science, 19-27.8.1974, Tokyo and Kyoto, Japan.
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for the third solar sphere (for the discussion of this feature by other com-
mentators see Lasserre [7], pp. 201-203). The computing technique in question
is at our disposal as soon as we have means of solving a generalized quadra-
tic equation (which in fact gives the periods of two combined spherical mo-
tions studied in terms of their plane projections), conceived of as a
proportion:®

b
(1)- Xy — T n (where Teomb jg the period of the combined mo-
X+y n tion and n an integer or rational fraction)

I would now make the additional claim that the proportion (1) is the explicit
formulation of the only «natural law» needed in Eudoxus’ system.

Although (1) is superficially similar to Apollonius’ pivotal formula (see
Ketonen [6], pp. 130-143), which can be given in the form

Tsyn Tsid (where Tsyn, Tsid are the synodic and sidereal
(2) Tovm a8 — Toun geriq}:ds of a planet and Tsun the period of the
un

there is no other explicit connection except this formal resemblance between
(1) and (2). We shall not discuss in this case-study whether there is a histor-
ical connection between them, discoverable in a more general survey. How
is (1) constructed? Leaving aside the problems of the transmission of Baby-
lonian scientific knowledge into Greece about one generation earlier than
Neugebauer presumes (see [13], esp. pp. 150-151) — for in my opinion they
will be satisfactorily answered by my results — I submit that the starting-
point has been the so-called «normal forms» of Babylonian mathematics. In
these «normal forms» (Neugebauer’s term) two numbers should be found
when (a) their product and (b) their sum or difference is given:

Xy =a
Transforming the two equations of (3) into two linear equations
X+y=Db

Y e

the solution follows (see [13], p. 41) as

[ x=5+)

&)
|

From the two equations of (3) we obtain

X d

X+ Yy b
5. There is no obvious term for equation in Eudoxus, but «proportion» of course is a
commonplace. Alternatively we could start from the concept of a (generalized) harmon-

ic mean; cf. [7), pp. 175f.
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which is, of course, an obvious step as soon as (3) 1s known. Moreover, (6)
can be conceived of as a proportion.

But there is only one solution to (3). In order to gain more freedom of
operation, it is quite natural to generalize (3) or (6) by multiplying both @ and
b by n (where n is an integer or a rational fraction). It is a nat ural step for
Eudoxus especially, since it can be based on the Elementa, v. 15, which, ac-
cording to all traditions, belongs to Eudoxus’ contribution to Euclid. But
making now a /b = T<°™® we obtain the proportion (1). That is to say, we
have introduced an auxiliary parameter n into the proportion (6). What does
(1) express, then? Before the methods of spherical trigonometry were intro-
duced (say between Menelaos’ day and Theodosius’ time), either only quali-
tative results were obtained or else graphical methods were used in the stud-
ies of spherical motions. As Neugebauer says ([13] p. 161), one of these
seems to have been based on the discovery that stereographic projection of
the sphere maps circles into circles. Hipparchus, who had no spherical trigo-
nometry at his disposal, may have solved spherical triangles by the method
of stereographic projection. More modest problems of circular motions in
sphere, however, may have been studied even much earlier by means of their
projections to a plane. Witness tne work of Autolycus of Pitane®. This 1s
still only one generation after Eudoxus. But then we have the titie of Demo-
critus’ work mentioned above, whicn suggests that problems similar to those
of Autolycus were discussed even before Eudoxus. If irdeed «armillary sphe-
res» of any complexity were constructed’, the discovery that stereographic
projection maps circles into circles would have been almost inevitable. But
we shall see that even far simpler graphical means, viz. the cross sections of
the celestial sphere, will suffice in the analysis of Eudoxus’ circular motions.
I am inclined, therefore, to follow Dicks here and to drop too advanced and
anachronistic instruments from Plato’s table— leaving onlya sphairion
at most (cf. Ep. ii, 312 d). So I assert that this was enough for ‘Eudoxus, and
that (1) gives the period of the combined motion of two other motions (which
are combined) characterized by their angular speeds, provided we can
«solve» the proportion (1).

But what does one imply by saying that two motions are combined
and characterized by their angular velocities? It is perfectly in order for a
classical scholar to maintain that «kEudoxus combined the planetary motions

6. Written perhaps about 330-300 B.C.; cf. The Books of Autolykos: On a Moving
Sphere and On Risings and Sertings, ed. and tr. F. Bruin and A. Vondjidis, Am. Univ. in
Beirut, Beirut 1971,

7. S22 Cornford’s opinion [1], pp. 74, 135; Wilamowitz, Platon, ll, p. 390; and Apelt’s
Platons D:aloge Timaios und Kritias... n. 89, p. 163; but consult also Dicks [2] p. 120 sq.

e 0
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in the sphere», but he must also face the logical consequences of this state-
ment. If any two planetary motions are combined and computed, this
means, in Eudoxus’ day, that their projections are drawn on a plane, and the
computations are made with reference to their angular speeds. This is a very
difficult research programme, unless sufficiently strong analytical and syn-
thetic means can be provided. Let us take the combination of the motions of
the first and second Eudoxan spheres of any planet as an example. Because
the diurnal westward rotation of the fixed stars, represented by the first plan-
etary spheres, is the swiftest motion of the system, and because the second
spheres (according to the Eudoxan tradition) are credited withanea stward
motion, their combination is of the following type:
(7) @rdY) . @indE) — comb(W)

I have used here the indices (ind, comb) to denote the individual and combi-
ned motions. Since the rotation of the sphere of the fixed stars is not caused
by any other outer motion or agent in Eudoxus, the first sphere is credited
with the individual motion alone. The directions of rotation are also indi-
cated (W or E), and I reserve the negative sign for eastward motions. Subin-
dices (I, IT) point to the first and second sphere. Now, since ®=1/T (cycle
per period), we obtain from (7) the form :

1 1 1

TiIm:l Tillld T::inmh

(8)

where the directions of rotation have been omitted. But (8) is tantamount to
part of the proportion (6), which can be generalized so as to obtain (1).

The result of this analysis of combined motions is one of the corner-
stones in [9]. It amounts to the assertion that all second, third and fourth
planetary spheres in Eudoxus, in so far as they are combined, must be cred-
ited with tw o motions (one individual, another combined) and hence also
with two periods. But the extant Eudoxan tradition ascribes one motion and
one period only to each planetary sphere. Hence either one must credit Eu-
doxus with too advanced mathematical methods, or drop the idea of com-
bined motions, or else be prepared to account for the «extra» motions and
periods. Now there are in the extant Eudoxan traditions certain hints, which
it is unnecessary to rally here, at these «additional motions and periods» in
Eudoxus’ lunar and solar theories. Having shown my hand, however, I shall
simply proceed and see whether the results will warrant my claim.

Before going into a detailed analysis of Eudoxus’ method, it is wise
to remember that if (1) indeed is the o n |y «natural law» in Eudoxus, it must
be capable of explaining a great number of things. Not only the known plan-
etary periods but also others only vaguely referred to, like the «long» lunar
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and solar periods implied by the «slow» motions of the respective third sphe-
res. And in addition to these the directions of rotation known from tra-
dition (from Simplicius on), the axial inclinations of the third and fourth
spheres, and so forth. These I call surface paramete r values. They
in turn depend on what I call structural parameter values. The
structural parameter values include the Eudoxan value for the obliquity of
the ecliptic (which cannot have been based on direct gnomon observa-
tions. since the Sun was credited with a fictitious additional deviation from
the ecliptic). That obviously restricts the choice of the axial inclinations men-
tioned. The traditional periods, too, may depend on one or several other pe-
riods (considered more fundamental for some reason) — be that the (un-
known) Eudoxan luni-solar cycle, or Plato’s «perfect year» (Tim. 39), should
my working hypothesis about the frame of reference in the Timaeus hold
good, or yet something else. And also the pattern followed in combining
planetary motions belongs to the structural features essential in the recon-
struction of Eudoxus’ system.

Now my claim that (1) is the sole «natural law» in Eudoxus implies that
whatever hierarchy of parameters we take, it is crowned by (1), on which all
structural parameter values depend. Since these parameter hierarchies are
discussed in more detail in [9], I give just one example of their interesting con-
nections. It is a fact that the Eudoxan obliquity of the ecliptic can be com-
puted starting from T=30 days for the month, and T==360 days for the
year, on which all other traditional planetary periods in turn depend. What
are these particular connections? First, T= 360 days is the calendaric year
and T = 30 days is the length of the calendaric «full» month. The side -
real periods are «one year» for Venus and Mercury, two for Mars, 12 for
Jupiter and 30 for Saturn. Second, all synodic periods known from the

tradition, can be conceived of in the following way. T¥® = 570 days =
0 . . :
= s 2‘; s days or the arithmetical mean of the calendaric year and

the true Martian synodic period. TP = = 110 days which, since the

Greeks rounded off by simply cancelling the fractions (cf. [13], p. 68), can be

10 2.30. 360
made 1101—3 dd.}"ﬂ i 30+ 360

the calendaric month and year. Taas = 260 days = 1/3 . 780 days =

days or double the harmonic mean of

=4/3. = _; e days or four thirds of the arithmetical mean of the cal-
endaric month and year. And T8, = TR, = 390 days = 2. 30 —2360

or double the arithmetical mean of the calendaric month and year. The
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third point reinforces the second one. On an additive interpretation of
Plato’s «great ha r m o ni a» we obtain, as duly pointed out in [9], a right-
angled triangle which determines an excellent value for the Eudoxan obliqui-
ty of the ecliptic. Its hypotenuse is equal to 39 =3 + 9 -} 27 or the sum of
Plato’s «triple intervals», and its shorter sides equal 15 =1--2-+4 -8 or
the sum of Plato’s «double intervals», and 36. The triangle in question ap-
pears in the cross-section of the celestial sphere as follows.

(wherec = 39, a = 15,
b= 36, and a = 22°37')

-

S

Fig. 1. Cross section of the celestial sphere. AB is a diameter of the summer
tropic, CD a diameter of the winter tropic, EF a diameter of the
equator, CB a diameter of the ecliptic, N the North Pole. S the
South Pole, and a the obliguity of the ecliptic.

In determining « the relative lengths of the sides of the triangle are need-
ed. Hence we can equally well multiply all sides by ten and obtain (a = 150,
= 360, and ¢ = 390). The full importance of this triangle will be seen later,
but suffice it to say that b = 360 and ¢ = 390 can be conceived of as geomet-
rical representations of the Eudoxan periods for the Sun, Jupiter and Sa-
turn, while (¢ - b) = 30 represents the lunar period of thirty days. But the
same triangle, the preconceived geometrical scheme which made it necessa-
ry to postulate the fictitious solar motion, can be obtained also through the
application of the rule for generating Pythagorean triples (see [13], p. 39).

c = pz -+ q“ (where p and q are arbitrary integers which
9 ¢ a= pE — q? are relatively prime and not simultaneously
b = 2pq odd, and p>q)

Several ancient commentators have attested that there are Pythagorean tri-
ples in Plato, who knew either (9) or some more particular rule. If we take
Plato’s basic «triple» and «double» intervals (3 and 2), and make (p = 3,
q =2),we obtain (c =13,a =35,b =12) from (9). It may be noted that this
is the simplest case where (q 5%~ 1). Multiplying the sides (a, b, ¢) by thirty we
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obtain the same triangle (c = 390, b = 360, a = 150) again. Hence there is in
fact both a «Pythagorean» and a «linear» or additive genesis for it. This
means, among other things, that at least some Eudoxan periods can be inter-
preted in terms of Pythagorean triples (and hence in terms of p, q), and also
in the geometrical terms of line segments (a, b, c), and the same holds for at
least some acute angles. In fact, we shall see that all Eudoxan periods can
be so interpreted. This amounts to a synthesis of the Pythagorean and Hip-
pocratic mathematics.

Perhaps these remarks will suffice for a discussion of the background of
Eudoxus’ method.

3. Eudoxus' method of analysis and synthesis.

I shall now discuss the mathematical character of the computing tech-
niques needed in solving (1), taking Eudoxus’ lunar theory as my starting-
point. This might well correspond to the actual order of ancient studies, as
suggested by Plato’s educational programme for astronomy (cf. Epin. 990b,
990c-d, Rep. vii, Tim. 39c-d). Because (7) holds for the Moon, too, the com-
bined motion of the second and third lunar spheres comes from one of the
following formulae:

(](}} mt[:lnmbiwl _|_ milllwld{"c‘-’l m?ﬂmb{wl
(11) @Pmdb W) — gind(E) @™ W) (where Ti)f > T5P™)
(12) o™ W) — @ind B)—= —@mb(B)  (where Ty < TE™)

If tradition (from Simplicius on) is correct about the westward
rotation ascribed to the third lunar sphere, however, only (10) or (11) will
apply. The lunar period T = 30 days, which we have discovered, may belong
either to the second or to the third lunar sphere. Let us discuss first the case
Tggm® = 30 days. If so, tradition implies that Tind is «longy», since wjpd
must be «slow». Whether this will be so, can be seen by solving (1) with
respect to Tjp™® — 30 days. We obtain the proportion

(13) Xy _ 30n
X+Yy n
According to (5), the solution of the «normal forms» corresponding to (13) is

I x_n—{—‘\/rﬂ:FlZOn

2

l +nF4/ n2F 120 n
¥ = 2
Let us discuss the negative sign case of (13) first. (i) If we are to obtain
rational solutions, (n? -+ 120 n) must be a square. Let it be @ From this we

(14)
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obtain the equation n®* + 120 n — a* = 0. Hence n =—— 60 - 1/602}- a2
Here again (60% 4 a?) must be a square; let it be denoted by ¢* Now the au-
xiliary variables a and ¢ are obtained from the following Pythagorean trian-
gle:c =p2+4-q%a=p?—q%andbh =2pq = 60 (see (9) ).

Since 2pq — 60, we must consider the following cases:

(where the acute angle ¢ is given in

Pq P 4 g e e P/q degrees and minutes for the sake

30 6 5 790 37° 6/5 of convenience only, being determi-

s ned by p and q in the following way:

30 10 3 3324 10 /3 tana = 2pq /(p* — q%). A para-

30 15 2 15911 15 /2 phrase can always be given in terms
30 30 1 349" 30/ of q/p = tan (-)

The lowermost case (p = 30, q = 1) implies indeed that particular form of
(9) which Proclus (On Eucl. 1, p. 487, 7-21; cf. Heath [5], i, p. 81) ascribed

to Plato. If we choose it, we can draw the corresponding Pythagorean triangle
diagrammatically as follows.

b = 2].“1 = 60

o= 3 49 &pfg =

a=p’- q’ =899
Fig. 2. A Pythagorean triangle for the tentative discussion of the
third lunar (combined) motion in Fudoxus’ system
The construction of this Pythagorean triangle is the culmination of the
analysis of the lunar motions. The auxiliary parameter » has given rise to an
auxiliary drawing of a synoptical character. We can now «turn backwardsy
and calculate first n (which could casily be illustrated by a diagram like Fig.
1). Itisn; =— 60+ c = 841 =292 (wkile n, =-— 961, being a negative in-
teger, may be omitted; cf. Heath [5], ii, p. 464). Hence from (14) x =Tind —

1T
— 870 days (which could well be the «long» lunar period), and y —  bopud

= 29 days (which is the «hollow» calendaric month). And Tj3™ = 30

days (or the «full» calendaric month). In the last step we form the ratio x Jy
= p/q = 30/1. This is the end of the synthetic part. Now even the last ves-
tiges of the auxiliary parameter n, introduced in the first step of the analy-
tical part, have disappeared 8. The geometrical by-product of the procedure
is the acute angle a = 3° 49", It may be characterized in terms of q/p; q/p=

=1/30 =tan {—;—). Presumably « is the axial inclination of the third lunar

8. Hence it is literally true that Eudoxus® system could not have been reconstructed
from his results, but his method must be known, too.
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sphere to the second one, which is equal to the Moon’s maximum deviation
from the (Eudoxan) ecliptic. For although (22°37"4-3%49°) is too small in
comparison with the correct value in Eudoxus’ day? (23°44 - 5°08), the
negative maximum deviation (22°37° —3949) is a bit too great (as compared
with the real value 23°44"— 5°08"), and since the Eudoxan obliquity of the
ecliptic was not defined in terms of the Sun’s third motion, all planetary de-
viations from it necessarily have been compromises. If we choose any other
combination of p and g, neither the axial inclinations nor the periods obtain-
ed will do.

The solution of the positive sign case of (13) follows the same pattern.
(ii) If we are to obtain rational solutions, (n? — 120 n) must be a square. Let
it be a2 From this we obtain the equation n®> — 120 n — a®* = 0. Hence n —
— -} 6044/60% -1 a2 Here again (602} a?) must be a square; let it be denot-
ed by ¢2. The auxiliary variables a and ¢ are obtained from the same Pytha-
gorean triangle as above (Fig. 2). Turning again backwards from this culmi-
nating point we compute z. It is n; = 60901 =961 =31* (while n, =— 841
may be omitted). Hence from (14) x = T = 930 days (which could well
be the «long» lunar period), and y = T5?™® = 31 days which, however,

was not a length of a month in Eudoxus’ time. Yet no other combination of
p and q will give a better solution, either.

The point is, however, that the solutions (i) and (ii) of the «normal forms»
corresponding to (13) can be generalized so as to apply to (1), and further-
more, in two ways. One generalization is in terms of p and q, and it might be
called the Pythagorean Solution. The other generalization is in terms of the
sides (a, b, ¢) of the right-angled triangle which is the culmination of the
analysis, and it might be called the Linear Solution. I give first the two gen-
eralizations for a positive sign case of (1), and next for the negative sign
case of (1).

n —x-+y=c+b — (p+q)* 1 Solution of the «normal forms»
X = — pl )
2 P(p--a - { X-+y=n constituting
(15)< b+c— a Xy Teomb 5
= —> q( ) i —
y 3 q(p+9 the proportion by =
X fy = mai_c —p/q Solution of the proportion

.

9. See Dicks [2], n. 240,
10. It may be noted that the solutions of x and y in terms of p and q are reminiscent
of the well-known ancient Greek problem called «the application of the area».
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(h=x— y=c—b = (p—q)? | Solution of the «normal forms»
a— b-c — Tecomb
X = 2+ — p(p— q) P_{W L
X — Yy =n constituting
(16) a+b—c _ omb
1 y= 5 —>q(p—q) the proportion ——— — L
- < X—Yy n
Xy = b = p/q > Solution of the proportion
c—a
Y i

Hence the final solutions are invariable with respect to the ratio p /q, which
is a special ratio for each planet.
In both cases the two acute angles can be characterized also by means

of their trigonometrical functions, 1.e. as ratios of the gnomon to its
shadow (see [8]).

_2pq . _pr—q*

(17) tana ™ e b /a; and tan (90" — «) 75 a/b

but this is unnecessary, because the paraphrase in terms of q /p is enough.
If Teom® — p in (1) and q = 1, the Pythagorean Solution and the Linear
Solution are equal (as in the case of the Moon). If not, they differ, but the
triangle needed in the Linear Solution is always reducible to the triangle per-
taining to the Pythagorean Solution (of the acute angles)'! by simply multi-
plying all sides by a coefTicient. Indeed, this was seen earlier when we dis-
cussed the triangles based on Plato’s «great harmonia». Since the Moon is
the simplest case from the methodological point of view (in other planets the
two solutions do not coincide), it is reasonable to assume, as we did, that it
has been the first target in Eudoxus’ studies.

Considering the computing technique sufficient for solving (1), it seems
warranted to divide the whole procedure into two parts. The first part con-
sists in finding out the two triangles starting from the fact that double the
period of a combined motion (T<°™?) equals the side b of the triangle per-
taining to the Linear Solution. This part might be called the Method of Anal-
ysis. Its culminating point is the construction of the two triangles. When
these have been found out, the rest can be computed as shown in (15) and
(16). The second part of the procedure might be called the Method of Syn-
thesis. It ends with the forming of the ratio x /y = p/q, which we call the
solution of the proportion. This use of language in my opinion corresponds
to Hare’s results in [3] and offers an interesting opening for future discus-

11. Eudoxus might have had access to tables listing or characterizing the angles in
terms of q /p, but also direct observation will suffice, since q /p= tan (a /2), when tan a¢ =
= 2pq [(p* — q?), according to Eucl. vi. 3.

15 PIAQLODIA 4



Akadnpuia ABnvwv / Academy of Athens

226 Erkka Maula

sions of the influence of Eudoxus’ (and Plato’s) mathematical methods on
the contemporary philosophical methods of analysis and synthesis. As an
example one might mention Plato’s methods of the One and the Great-and-
Small. I think that the above outlined Eudoxan methods, together with the
Pythagorean method of approximating the surds, will throw light on them.
After having read carefully Proclus and Pappus, I would also say that their
accounts of the methods of analysis and synthesis are compatible with my
reconstruction of Fudoxus, which might stimulate the current discussion. In
this paper, however, I shall continue with an application of (15) and (16) to
Eudoxus’ planetary theories'?.

4. The Moon.

Starting from the traditional Eudoxan synodic periods we have discov-
ered a lunar period of 30 days. Above, one alternative was discussed, viz.
Tiy™® = 30 days. It remains to investigate the other alternatives, in which

either Tind, Tsom®, or Tind is equal to 30 days. I refer to the previous alterna-
tives by (i) and (ii).

(iii) What about making T;P™® = 30 days in (I)? If nothing more is
known, the positive sign case is reduced to (i) and the negative sign case to

(ii). It is easy to see, however, that the values of T{*™ and T§i™ can be in-

terchanged, if the sign is changed, too. Consequently we must discuss also
the proportion
(18) 870 . 30 29 n

870 - 30 n
which gives an even better value for the axial inclination: p/q = 29/1 or
930 . 30 :
== 3PS5T i e — 3942°).
a = 3°57 (while 930 — 30 31 days gives a worse value « 3°42)

I think that this is the correct solution.

(iv) There is one more possible solution which employs the integer lengths
of the calendaric morths, viz. 3;” : i:; — 870 days, but this implies an
altogether implausible axial inclination: p/q =30/29 or « = 1°57". (And
the positive sign case does not yield an integer solution).

(v) Next we may try to apply the «normal form» technique and experi-
ment with the period T = 30 days, taking instead of the other lunar period

| 1

of 29 days some other length of a month, e.g. T = 23'—5—, 297 or 29% +

12. In the Appendix my former student and present collegue, Mr. Eero Kasanen dis-
cusses my reconstruction of Eudoxus’ method from an algebraic point of view.
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| . . . .
+ 33 days (which were used in ancient times, but, as far as we know, not

before Callippus; for more detail see [9], Table 2 and notes). But nc likely
results are obtained: n will not remain an integer, and the axial inclinations
1

computed remain unlikely. (The relatively best result ensues from T =29 3

days or the mean synodic month; n =592/2 and p/q = 60/1 or ¢ = 1° 55’).

(vi) If T==30 days does not belong to T53™°, T{*, or T;P™®,but to Tjp¢

in (8), 1t can be shown that there will be no «long» lunar period at all
for the third lunar sphere (all lunar motions being combined). For these rea-
sons I conclude that (18) gives the correct solution, viz.
a

1

The directions of rotation as in (10); T3¢ = | 59 days — from (8);

(194 p/g =29/1; n =900; x = 870 days = Tind ;

y = 30 days = Tspmb; Teomb — 29 days; and a@ = 3957

.

It may be noted that the periods of 30 and 29 days need not be justified by
calendaric reasons only. For since the Moon’s motion in fact is not uniform
(contrary to the Platonic-Eudoxan postulate), the length of the synodic month
(1.e. the period between two consecutive new-moons) is not always equal to

29 —‘;— days either. In fact the difference of two synodic months may be about

thirteen hours. Hence the periods T= 30 days and T=29 days may repre-
sent the upper and lower limits of the synodic month, accurate enough for
practical (e.g. calendaric) purposes. Therefore (19) is compatible also with
Tim. 39c, where Plato indicates the synodic month.

The two triangles corresponding to (19) are equal and can be represented
diagrammatically in the following way.

b= 2Ppq =2-291 = 528

x =357 & p/q = 29/ A
a=p’-q'=29" -1 - gao

Fig. 3. The lunar triangle for the combination of the second and
third lunar motions.

It can easily be checked that (15) holds good.
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5. The Sun.

We have discovered a solar period of 360 days. Since in the Eudoxan
tradition (from Simplicius on) the third solar motion is creditedwith ane a s t-
w a rd motion, the combination of the second and third solar motions can-
not be of the type (10) if the tradition is correct. Hence the solutions do not
come from the proportion

(20) Xy T_.'?_ﬁﬂ n
X4y n
which implies westward motions only. But the combination cannot be of the

type (12) either, because in that case T;3™" would become «long», in con-

tradistinction to Eudoxus’ lunar theory, and an implausible axial inclination
would be implied (a = 89°22". Starting from the combination of the type
(I1), we obtain the solution from the proportion
21 Xy 364 n
X — Yy n

where the period T;i™® = 364 days (which has been found by solving

(20) )*® might be called the «seasonal year». For it will be remembered that
Eudoxus omitted Euctemon’s and Meton’s discoveries and equalized
the astronomical seasons.

The two triangles pertaining to the Linear and Pythagorean Solutions
are different from each other in the case ot the Sun. They can be represented

diagrammatically as follows.
coefficient 1 /4 reduces to

b - 2164

x=1155 & p/g=911 Al
a= 33120 a= p’-g° =9’ - 1728240

Fig. 4. The two triangles for the third solar motion; the Linear Solutions
come from the left, the Pythagorean Solutions from the right

The solution is: p/q =91 /1, n = 32400, x = T}¢ = 32760 days or

the «long» solar period, y = Ts?™> = 360 days or the calendaric year, and
a = 1°15.5". It may be noted that we now have reached one of the mostim-

13. Censorinus associates a year of 364 1 /2 days with Philolaus ( De Die Nat.). Being
based on a progression of 3, just as Plato’s triple intervals, this may tell about the contem-
porary discussions; 364 is the nearest integer if fractions are simply cancelled. — The so-
lution cf. (20) with p /q = 90 /1 gives a= 1°16".
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portant results required. Eudoxus’ me t h o d implies the obtained fictitious
deviation postulated for the third solar sphere. Wher it is added to the Eu-
doxan obliquity of the ecliptic, quite an accurate positive deviation in latitude
is obtained (22° 37" -~ 1° 15.5" as compared with the real value £ = 23°44").
And the negative (fictitious) deviation is still within the limits of Fudoxus’
observational accuracy™ (see [2], p. 155).

Furthermore, the seemingly superfluous axial inclinations postulated
for the third planetary spheres now also make sense. For starting from (8) we
obtain for the Sun by the same method as in the previous cases discussed,
an axial inclination. But T;*™ = 360 days for Venus and Mercury also

(in a geocentric system)'s. Hence the axial inclinations of their third spheres,
the poles of which are on the ecliptical plane, can be understood to be the
same as that of the Sun. This strange feature from the oldest tradition
(Arist. Met. A 8, 1073b 30—32), too, is implied by Eudoxus’ meth o d. For
the other planets, these axial inclinations will be different in each case, and
different from those of the Moon and the Sun. As for the periods obtained,

no better value for the year will do. We cannot make, e.g., Teomb — 365
|

or 365 = days (Just as this type of operation was impossible in the case of

the Moon). But it is as well to remember that Eudoxus complemented his
astronomical work with calendaric studies!®. Hence the «cosmological con-
stants» obtained do not seem implausible.

6. The fourth motions of planets proper.

Since a hippo pede was created for each planet proper by the third
and fourth planetary spheres, rotating in opposite directions in the synodic
period (except for Mars which is credited with a period exactlyone thir d of the
true synodic period; for an explanation of this see [9], pp. 82-83), their motions
cannot be combined in the sense of affecting each other’s periods. However,
the motions of the fourth and second planetary spheres can be so combined
(see [9], p. 112-113). What is more, due to the Eudoxan arrangement where

14. Eudoxus’ observational accuracy can be estimated, thanks to Hipparchus® com-
mentary (Comm. in Arat.) As regards the tropics, equator, arctic and antarctic circle, the
error ranges from 1° - 3° in the majority of the cases. See Dicks [2]. p. 155-156, but also
[8]. It may be noted that x = 32760 days = 91 years of 360 days each, implies a fictitious so-
lar motion (not to be confused with precession) of about 4° a year, and indeed there are
indications of such a motion in Eudoxus. The period of 91 years meets our expectations
concerning the length of Eudoxus’ observation series : they are far shorter.

15. Cf. Dicks [2], n. 345.

16. See Dicks [2], pp. 188-189.
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the axes of the third spheres of planets proper are situated on the ecliptic,
the inclinations between the third and fourth spheres can be computed. The
attached Fig. 5 will illustrate the arrangement.

Fig. 5. A cross section of the celestial sphere. EE = the equator, LL = ecli-
ptic = the axis of a planet’s third sphere, BB = the axis of the ecli-
ptic = the equator of a planet’s third sphere, AA = the equator of
a planet’s fourth sphere (inclination to the ecliptic appears as a), and
CC = the axis of the same planet’s fourth sphere. Hence the inclina-
tions i of the axis and equator of the fourth sphere to the axis and
equator of the third spheie appear as the complement of a.

The computation of the periods of the combined motion of the planets’
second and fourth spheres is made easier by the fact that both the sidereal
and the synodic periods are known. Otherwise the computations follow the
same pattern as in the cases of the Moon and the Sun. If the tradition (from
Simplicius on) about the w e s tw a r d rotation of the fourth spheres is cor-
rect, the combined motions of the second and fourth spheres must be of the
following types (and the lengths of the synodic and sidereal periods will de-
termine which one applies for a given planet):

(23) (ﬂﬁ’mh{w} — mil:rd{E] = ﬂ]fﬂ’“b{wl (where T';’,:,d}'[?;’mbj

Because the combined period of the fourth spheres in principle is observa-
ble, it is clear that it is equal to the planet’s synodic period. Likewise the si-
dereal period is equal to the combined period of the second sphere. Hence
the proportions, the corresponding two triangles, the solutions, and the in-
clinations of the fourth spheres to the third spheres are obtained as follows.

Venus The proportion is

(24) Xy _ 370n
X—Y n
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The two triangles pertaining to the solutions are as follows.

coefficient = 7 /30

Fig. 6. The two triangles for the fourth motion of Venus

The solution is: p/q == 19/7, n =617 4  X=977T—, y = 360 days, a =

7
= 40°27'. Hence i = 49" 33" (Schiaparelli in [14] gave i = 46°).

Mercury The proportion is (for a westward rotation)

- IIO%}-n
Gl T

The two triangles pertaining to the solution are as follows.
coefficient = 13 /40

b= 2 pgs=
2-9 4

F ]

F F |
a = 200 ﬂnp-q = 9 - 4" =65

Fig. 7. The two triangles for the fourth westward motion of Mercury

The solution is: p /q =9 /4, n = 520, x = 360 days, y = 160 days, and « =
= 47" 55°. Hence i = 42" 05" (Schiaparelli gave i = 23°).

It will be seen that, in contradistinction to Venus, the inclination i dif-
fers considerably from Schiaparelli’s (conjectural) value. Since he had start-
ed from the assumption that ;/ for Venus and Mercury represents these plan-
ets’ maximum elongation, we may consider an alternative in the case of the
direction of rotation of the fourth sphere of Mercury. If Simplicius is not
right in crediting the fourth sphere of Mercury with a westward motion, but
was led to do so because of the analogy of other planets, the combination of
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the motions of the second and fourth planetary spheres of Mercury may
have been of the following type (cf. (12) )'*:
{26} m'f]“’“bi“'l e [t]i[:rd{E:’ — _mtl:amhrE] (Whﬂl‘ﬂ "[‘1'1":’:1 “infme

If so (or, in case (12) was the combination of the third and second spheres
and i was computed from 1), the solution will be: p /q = 17 /4, x = 360 days,

y= 34-—11-.?- days, and @ = 26" 29’. Because the positions of the sides (@ and

b) can be interchanged (cf. (17) ), it may have been that i = 26°29°, which
would make a fairly good approximation to Mercury’'s true maximum lon-
gation (e = 27°45’; for Venus e = 47°30"). It must be remembered, however,
that due to the eccentricities of orbits, the elongations vary. In Mercury
(17°50" < e << 27°45") and in Venus (45.5° < e < 47.5°). In ancient times the
elongations were generally given as e = 20°N. or S. for Mercury and ¢ = 50°
E. or W. for Venus (cf. Chalcidius, Comment. § 70, p. 138, ed. Wrobel). The
fact that Mercury’s elongation was given North or South, may indicate a pe-
culiarity in the treatment of Mercury, like the one suggested above. But even
i — 42°05 is possible, for Hipparchus finds errors up to 23° (and in one
case nearly 60°) in Eudoxus’ description of the colures (Comm. in Arat. 1,
11, 9-21; 1i, 11, 21; cf. |2, p. 155).
Mars The proportion is
Xy 260 n

oL XYy T n

17. Whatever arrangement we accept for the computation of the inclination i for Mer-
cury and Venus, we must compare their directions of rotations to those of the Sun. For in
the Timaeus Plato speaks about motions in opposite directions. Tm. 36 d may be a very
concise summary of the motions of the seven sets of planctary spheres in Eudoxus. But at
38d the motions of Venus and Mercury are contrasted with the motion of the Sun. Thiee
possibilities may be discerned here. (a) If the / was computed fiom (12) or (26) for Mercu-
ry, it possesses a dynamis contrary to the dynameis of Venus and the Sun,viz. the power
(whatever it was) causing the eastward combined motion of the fourth sphere, in contra-
distinction to the westward combined motions of the innermost spheres of Venus and the
Sun. (b) If the i was computed from (12) or (26) for Venus, too (i = 63° which is still possi-
ble; see the note on Eudoxus’ observational accuracy in the description of the colures), both
Venus and Mercury possess this contrary dynamis.(c) The simplest explanation is, however,
that since all three have the same period (ibid.) of one vear in the zodiacal motion, Venus
and Mercury are contrasted with the Sun on the account that they have four motions in
Eudoxus’ system. The motions of their third spheres of course are contrary to the Sun’s
echiptical (or near-ecliptical) motion and so are their retrograde motions. — For a differ-
ent explanation see Cornford [1], pp. 105-106, but consult also [9], p. 32. n. Heath [4], pp.
165-169, discusses at some length certain ancient explanations. I must add that Harold
Cherniss in a letter to me doubts any reference in the Timaeus to Eudoxus’ systems. Be that

as it may, the only things that I really have deduced from Plato are the loxotes and the
clue into Pythagorean triples.
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where the period T=260 days, instead of the true Martian synodic period
TS = 780 days, probably is the period of tre actual loop (see the argu-

ment in [9] pp. 81-84). Besides, Schiaparelli has shown that if the true syn-
odic period is taken, Mars will have no retrograde motion at all, no matter
what value 7 is given (see also Dicks [2], pp. 186-187, and Lasserre [l]. pp.
205-206).

The two triangles pertaining to the solution are as follows:

coefficient = 23 /20

2

v 1_}59

W2
b= 2 pq_:
b=2-260 g
s 2 2 -23 -13
tan — ===
2 23

1]
A= ‘-q’ = 23%-13%-360

Fig. 8. The two triangles for the fourth motion of Mars.

ii x = 720 days. y — 406 —ig—
days, and @ = 58°57". Hence i = 31°03" (Schiapatelli gavei = 34", but in all
outer planets his inclinations are pure guessing, guided by modern spherical
trigonometry, for the outer planets may be at any angular distance from the

Sun). (If Tgg™® = 780 days and the solution comes from (26), 1= 35"09’,
or p/q = 25/13).
Jupiter The proportion is

Xy - 3‘;_7{_]n
XV n

The solution is: p/q =23 /13, n = 1126

(28)

The two triangles pertaining to the solution are as follows.
coefficient = 131 /30

b= 2pgq
2131 13

tan ;{.._-,E
2 13

i

- g° = 1317~ 13?

Fig. 9. The two triangles for the fourth motion of Jupiter.
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The soluticn is: p/q = 131 /13, n = 12.360.144 /131, x = 12.360 days, y

— 428% days, and a@ = 78°40'. Hence i = 11°20" (Schiaparelli gave
i = 139,
Saturn The proportion is
xy  39n
=) Xee=y n

The two triangles pertaining to the solution are as follows.

coefficient = 347,30

a=1039s 135
347

Fig. 10. The two triangles for the fourth motion of Satuin.

Lest the somewhat cumbersome figures seem suspicious, it may be advisa-
ble to do the computations necessary in detail, taking Saturn as an example.

From (15) we obtain x = 30 , 360 days = s ,and b = 2.390 days.

2
Hence
a-+b-c= 60. 360
b = 60.13
a--c = 60. 347
Now p /q = a—li—c — 347 /13 (a paraphrase for i = 4° 15°; Schiaparelli gave

i —=6%. Andy=q/p . x = 13/347 . 30 . 360 = 390 /347 . 360 days (tan
i

ey /x = q /p). This is all.

7. The third motions of planets proper.

It 1s, In my opinion, a master-stroke of methodological economy that
the combinations of the second and third motions of the planets proper all
are of the type (12) which has not been used elsewhere. And even if (26) was
used for the combination of the second and fourth spheres of Venus and Mer-
cury, (10) and (12) will suffice for the third motions of the planets proper.
If they were studied in their ecliptical projections, as one may well assume,
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all projections equal zero and the particular solutions are superfluous. If
they were studied in equatorial projections, the northward motions mention-
ed in the tradition will appear as having a direction opposite to the fourth
motions (since hippopedes are formed).

8. The hippopede constructions.

Schiaparelli’s conjectural hippopedes have been studied in detail by sev-
eral generations of ancient and modern commentators. In the Bibliogiaphy
of [9] I give the titles of the most representative investigations, and it is un-
recessary to dwell on the topic here. Suffice it to say that Schiaparelli’s hip-
popedes are close enough to mine to give an approximative summary. But
it must be emphasized that although his inclinations (i) are rather near to
mine, mine are implied by Eudoxus’ reconstructed method, and do not ensue
from modern observation and mathematics (cf. Neugebauer [12]).

9. Conclusion.

I have tried to show that all astronomical parameters, known either ac-
curately or in principle from the Eudoxan tradition, and characterizing the
Eudoxan theory of the homocentric spheres, can be obtained as soon as
means are discovered for dealing with a generalized proportion of the foll-
owing type:

B0) xv:(x 4 ¥)=nT"":n

Here x,y are two planetary periods (of which one is known or postulated in
advance), n is a positive integer or a positive rational fraction needed in the
generalization (cf. Eucl. v. 15) and T™b is a planet’s synodic or sidereal
period, known in advance from observation. The main body of my paper con-
sists in the reconstruction of Eudoxus' method, which, when applied to the
observational planetary data («the phenomena to be saved»), produces the
astronomical parameter values. These include both real, observational values
(of which some are rather accurate) and entirely fictitious ones. The success
of the reconstruction may be judged from the fact that also the fictitious
values, such as the inclination of the Sun’s third sphere, can be obtained.

The main types of parameter values obtained are the planetary periods
(c.g. Tid = the period of the individual motion of a planet’s sccond sphere,

comb — the period of the combined motion of a planet’s second sphere,

etc.), the directions of the spherical rotations (e.g., Diy'™) = the

westward individual motion of a planet’s fourth sphere, etc.), theincli na-
tions of the spherical axes and, being deducible from these, the maximum
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deviations of a planet’s sphere from the equator (including the Fudoxan
value for the obliquity of the ecliptic) and from the ecliptic.

In essence, the reconstructed Eudoxan method is based on Pythagorean
mathematics, and pains have been taken to show that it can be backed by prop-
ositions belonging to Eudoxus’ known contribution to the Elementa. Eudo-
xus’ method consists of two parts: ananalysisandasynthesis. Be-
cause Eudoxus’ importance is acknowledged by almost all subsequent pro-
motors of mathematical analysis (for more detail see my paper The Elements
of Analysis, «Proceedings of the XIV International Congress of the History
of Science», 1974, Tokyo and Kyoto), and because Fudoxus’ method has
affected much contemporary philosophical analysis and synthesis, my re-
construction may be of some interest to the historian and philosopher of the
exact sciences. Besides, it may illustrate the logic of scientific discovery.

At the heart of the reconstructed method (discussed from the algebraic
pomt of view in the Appendix) lies in each case a Pythagorean triangle, dif-
ferent for each planet. Its sides are generated from two relatively prime, une-
qual integers p, q in the usual way, and the triangle itself has the role of an
auxiliary drawing in a geometrical proof. In terms of this triangle both the
auxiliary parameter n and the solution to (30) can be given, and its angles
determine the axial inclinations and maximum deviations. The solutions to
(30) are invariable with respect to p, q (which may be called «the mathemati-
cal constants of nature») and can be obtained in each case in the form: x Jy =
p /q. The solution gives rise to the tangent (= ratio of the gnomon to its shad-
ow) of the angles of inclination, say i, and maximum deviation, say a. In fact,
it also suggests the main features of the astronomical instrument (arachne)
which Eudoxus has used in measuring angular distances. Moreover, the in-
% or = tan L:z (cf. Eucl. 111 18, VI. 3), which leads to
the theory of stereographic projection, expedient in the calculation of angu-
lar velocities, paraphrased in termes of periods in (30). These further impli-
cations of the reconstruction, however, will be discussed elsewhere. Suffice
it to say that Eudoxus’ method can be understood as a geometrical treatment
of time, and that his main heuristic aid has been the Pythagorean numerical
analysis (cf, lTambl., In Nicom. arithm. 10, 17).

I list here the most important parameter values explained. (D = direc-
tion of rotation).

The Moon: Tpm™ = 30 days, Djpd™) | Tind — 870 days = the «long»

lunar period, TsomP = 29 days — the «shorter» period = the «hollow»
month, and « =357 (p/q =29/1),y/x =q/p = 1/29 =tan (a/2).
The Sun: TPm® = 360 days, Dind(E)  Tind — 32760 days — the «long»

Il I

verse of p/q = tan
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solar period, Tie™? — 364 days = the «shorter» period = the «seasonal

year» 4 . 91 days, and « = 1°15.5" = appr. halfan el I; (p/q = 91 /1).

Venus: Tp™ = 360 days, D2¥® | incl. = the same as for Mercury

and the Sun, while for other planets this will be different for each.,
Ti™® =Tgome — 570 days, and incl.,,=49°33" (p /q =19 /7) . (Note also the

other alternatives discussed above).

Mercury: Tjp™ = 360 days, D™ |, Tsemb — Tiomb — ll{]%}-duys.

aund incl.,,, = 42°05" (p/q = 9/4). (Note also the other alternatives discus-
sed above).
Mars: TP™ = 2 . 360 days, DjtdW) , Teomb — Teomb — 260 days (which

1s the period of the actual loop, while Ts¥® = 780 days), and inclyy =
—=31°03' (p/q=23/13). (Note also the alternative Tsomb — 260, Tiombh —

11
780 days, i = 35°09°).

Jupiter: Tpm = 12 . 360 days, D™ , Tgemb = Teomb — 390 days,
and incl.yy =11°20" (p /q =131 /13).

Saturn: "I‘;:"“b — 30 . 360 days, Di;‘“w? , Teemb — Tsomb — 390 days,
and incl.,,y =4°17" (p /q = 347 /13).

Loxotes:a = 2237 (p/q = 3/2); the real value in Eudoxus’ day ¢ =
= 230 44’

It will be seen that calendaric considerations indeed played a role in Eu-
doxus’ concept of empirical data, and that the hippopede constructions real-
ly aimed at approximative (or idealized) descriptions of the observed plane-
tary motions. But it must have been something of a shock for Eudoxus and
his followers to discover that one and the same method of computation in-
deed produces parameter values that were well known from the past. It must
have appeared as if in (1) a «law of nature» had been invented. A «law» which,
albeit simple, nonetheless indicates in an economical interpretation the «con-
stants of nature».

The inner beauty of Eudoxus’ system, even in the barest outline drawn
in this paper, is gripping. The simplicity of the mathematical tools, the very
concrete, yet strikingly effective methods of analysis and synthesis, the ex-
treme parsimony of the explanans and the ingenious interpretation,
contrasted with the multitude of the phenomena explained, are to the full
credit of Eudoxus’ genius. His solution to the cosmological problem is char-
acterized by strong methodological monism, which Philipp of Opus prob-
ably refers to in the Epinomis 991e-992a. Other details may be omitted here,
but suffice it to say that if for instance the sum and difference of p and q in
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each particular solution are considered, it will be noted that the same num-
bers (12, 13, 30, 36, 90, and 360) occur at all levels of the explanation, strong-
ly suggesting that one has seen into the depths of the celestial architecture.
At the same time, however, Eudoxus’ system was capable of further develop-
ment by his followers. Hence it is not a system of sterile rigidity like Aris-
totle’s, but the beginning of a dynamic paradigm.

Eudoxus continued active studies on Cnidus until the end of his life.
Strabo (C 119), following Poseidonius, mentions that he observed Canopus
(a Carinae): this is probably connected with his attempt at an estimate of the
diameter of the Earth. But the mathematical foundations of the Greek astro-
nomy (and ours) were laid, as cogently as it was possible for Eudoxus, in his
theory of the homocentric spheres. If the reconstruction of Eudoxus’ method
submitted above is correct, the philosophical discussion of such themes as
the real meaning of the principle of «saving the phenomena», the concept of
time and its mathematical treatment, and the heuristic value of the methods
of analysis and synthesis in other, more general problems, may begin.

When viewing Eudoxus’ theory of the homocentric spheres as a whole,
one notes the striking discrepancy between the geometrical model and the
physical reality. Not only is it so that a geometrical framework is insufficient
in dealing with the computation of angular velocities, and the results obtain-
ed approximative. The model, albeit in motion, is far from the modern ideal
of physical models which try to preserve the possibility of checkingat any
t i me. Eudoxus’ model, on the other hand, «saved» a fixed number of phe-
nomena at a given time, and it had predictive value in the case of each
planet at a given time only, viz. at the time when a planet’s maximum devia-
tion was observable. With respect to these «saved phenomena», however, the
model is in full correspondence with reality. That is to say, the language of
Eudoxus’ theory exhibits the idea of logical or semantical atomism at certain
fixed times.

One can understand this view of language against the contemporary se-
mantical theories in Greek philosophy (see e.g. my paper The Semantics of
Time in Plato’s Timaeus, «Acta Academiae Aboensis», vol. 38, No. 3, 1970).
For the Pythagoreans «the whole universe is filled with numbers» (cf. Ar.
Met., 1090a 20 sq.), but for Aristotle already the contents of the two boxes,
one containing the language and linguistic models, the other containing real-
ity, are different. We can almost put our finger on the point of divergence:
at De Caelo 289b Aristotle discusses the possibility of motions of stars and
their circles independently from each other. Hitherto, a planet and its sphere
had formed a unity, one physical body if we wish to put it so.

But even if we grant this somewhat alien idea of physical bodies, the fact
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remains that Eudoxus’ model was in full correspondence with reality at given
times only. For surely no physical body can rotate on three or four spheres
ofdifferent radii at the same time. And different radii they had, as Aris-
totle clearly implies (notwithstanding what modern commentators have clai-
med), for that is essential if stereographic projections are used in the calcu-
lation of angular velocities. Nevertheless, the «temporary» agreement of Eu-
doxus’ model with the «saved phenomena», as well as his strikingly concrete
method of analysis (or should we say, in view of A'rpad Szabo’s resuits con-
cerning the origins of terms for «proof» and «showing», Eudoxus’ optical
method of analysis), are extremely effective theoretical tools.

It 1s with great delight, therefore, that I can end this paper by pointing
out that the attitude towards models and their agreement with reality was
exactly of the type required in Plato’s Academy (cf. Ar. Mer. 990a). For my
working hypothesis even in this paper has been that Plato in the Timaeus is
using Eudoxus’ theory as the frame of reference for his own fragmentary
astronomy. It is from the Timaeus that I have discovered the clues to Eu-
doxus’ Pythagorean triples and Eudoxus’ obliquity of the ecliptic (and
Plato’s great harmonia provides the arachne with two scales, musical and
geometrical harmonic scales for angular measurement). Now, at Tm.
37c¢ Plato uses the term agalma for the relation between the World-Soul and
the planets, and I have shown elsewhere (Plato’s Agalma of the Eternal Gods,
«Yearbook of the Philosophical Society of Finland», 1969) that agalma
in Plato is a pregnant philosophical metaphor, exceptionally apt for the de-
scription of the relationship between «everlasting» and «temporal» beings. In
Plato’s hands, aga/ma has undergone a change from a religious concept into
a philosophical one. But it has preserved some of the original religious con-
notations. The agalma at Tm. 37c is (i) a likeness of its paradigm and the
Demiurge tries to make it «yet more like its pattern», (ii) it is «set in motion
and alive», (ii1) it is the object of the Demiurge’s delight, and (iv) it seems to
have a function similar to cult-statues of which the divinities are supposed
to discuss — at least during the exalted moments of actual worship.

It is in this intellectual atmosphere that Eudoxus presented a geometri-
cal model that «saved the phenomena», but fully corresponded to reality at
given times only. Like so many later mathematicians, Eudoxus has created
a visible model, the heuristic value of which lies precisely in the fact that what-
ever 1s done with the model will suggest particular solutions to problems dis-
covered in reality. Is this not the same perennial ideal that also philosophers
like Leibniz and Wittgenstein have aimed at with their theories anchored to
semantical atomism?
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APPENDIX?®

An algebraic view.

In Eudoxus’ cosmological construction, angular velocities (inverses of
periods) can be combined by projecting them pairwise from one sphere to
another. From the mathematical point of view, such combinations can be
expressed by the following formula:

| Il T+ Ty _ 1

) g+ =77 Teomb
In order to master the combined motion Eudoxus thus had to be capable of
solving the algebraic problem: Given T**™" give x, and x, such that

%o XE . weamb

2 X; £ X -
With the known mathematical tools of that age the problem was
unsolvable. Hence we try to find out a possible reconstruction by the anal-
ogy of which Eudoxus could have solved (2) usingthe methods of anal-
ysis and synthesis. Although the following algebraic formalism is
perhaps anachronistic, contemporary mathematicians, however, would have
been capable of making essentially the same reasoning.

To begin with let us consent to Erkka Maula’s working hypothesis that

Eudoxus knew the (far older) Babylonian method of normal forms to solve
quadratic equations.

rll'

b - T
Xy . Xg =—a mE==" [V[T]:Fa

(3) problem soluti =
te X, £ X, =b lon 9 b b )2
= F||2) T

When looking for the characteristic features of (2) in the analysis we
realise that there are in fact the equated ratios of left and right sides of the
normal forms.

Xy Xg ==Trcomb _ x; =1/2+4/1 /4 F Teomb

(4) solution
Xy & Xg =1 Xg = = 1/2 F 4/1 /4 FTeomd

After this observation it is natural to examine the solution of (4) — and

to our pleasure it satisfies the original problem (2). Heuristic «optical» par-

tition yielded a fruitful result — let us continue in the same manner. Problem

(2) has an infinite set of solutions and basically (2) is a ratio. How can pro-

e i ———

* By Eero Kasanen, University of Turku.
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blem (4) be generalized accordingly? We introduce a parameter n. Let X, + X,
be equal to n, then x; . Xy = T™® | n, Thus the characteristic features or
the original problem have been maintained. Eudoxus’ assumed contribution
to Elementa includes

a an
(5) e (v . 15)
which gives evidence of the preceding mode of reasoning. Problem (2) is al-
mb
tered into an equivalent form —L -2 — T2 =B ond so the respective
X1+ Xy n
normal forms acquired will be
»
- s n -’I “_E-u mhb
xl.xg*——-T‘“"‘"".n Xy 2 I V[ J :FTN N
(6) < solution <

Lxli Xo — N xi—j:_”:FV[ ] :}:Tmmh_n

When testing this result the following cnnc]usmn can be immediately drawn:
allowing parameter n to take several values an infinite set of pairs x;, X,
satisfying (2) is obtained. The only flaw is the permanent presence of para-
meter n which logically corresponds to auxiliary designs in the geometrical
analysis.

We proceed to the synthesis restoring the ratio split in the analy-
sis. Partitioning is compensated for by building the ratio anew. The solu-
tions X,, X in (6) are moulded into the ratio x, : X, which is called the s o | u-
tion of the original problem. Calculating

. %-}_V [%] E:E:Tmmb.ﬂ [ +V[ ] F Teomb n]:FTcomh
(7)
Xy F Teomb

5
2 i—;%CV[—;] FTeoms
']'bnmh

we witness the striking disappearance of parameter n. All pairs of number
Xy, X, satisfying the condition

-"‘1 o 11 ',:F Tcﬂmb
12 Ttﬂmb

also satisfy the original problem. The value of parameter n= x, + X, is
seen in (6).

What have we gained? The problem was divided into parts by using the
above outlined method of analysis. Parameter n was introduced to maintain

(8) =

16 DIAOZODIA 4
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the characteristic features. The pair of simultaneous equations was solved by
the method of normal forms. The solution was defined and calculated in the
synthesis in which parameter n was also eliminated.
Let the following figure illustrate the situation.

solution Xy Xy 7 Teomb

Xy - Xp
roblem —=Teomb  _ _ . " — - - -
P Xy 4 X, Xs Teon

l *

analysis
; X; « Xg == Teomb
Lxl + x; =1
synthesis &
parameter n
analysis eliminated

continued &
parameter n

introduced
Y ~
n n)?
S X; == - oo n
Xy« Xg=TO"™ . n the method 2 [2 ¥
Y. i Wl e 3
X; £ X, =n n n
- 1 2 Xog== :Ez—q: V[.._z_] -:F-[tﬂmb-n

Ol ZTAGEPEX THI ®YIEQXL
MIA MEAETH ITA THN IIPQ'I'MH IZETOPIA TOY ®YIIKOY NOMOY

Mepiinyn.*

21N HeAELTN avtn Yiveral npoonabeia va de1y 01y, 611 6Aeg ol aotpovopt-
K&G mapapeTpot, oL sival yvootég eite EnaxpiPac eite xat’ apynv and v
napddoon to0 EbdoEov kal mob yapaxtnpilovv 1) Bewpia Tov yid tig Opod-
Kevipec o@uipeg, uropoiv va £EayBolv 6tav Ppeldii tpomog va peiernbolv
ME MG YEVIKEVLUHEVN @vaAdoyia tol timoL:

(30) xy:(x 4 y) = n Teomb: p,

* Metappaon amd 10 ayyhikd M. Apaydva-Movixov.
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"Ed® x,y eivat 8o mhavntikég nepiodot (and tic dmoie N pia eival yvoot
1| mapadedeypévn @¢ afiopa éx TV mpotépav), n elval BeTikog axépairoc
N Oetixdg pntog xAaopatikdg aplBpog, anapaitnrog ot yevikevon (npPi.
EvkA. V - 15), xai T™ givar 1] ovvodikn §| dotpikn mepiodoc £voc mha-
Vi, Yvootn npoxatefollkde amd TNV mapatipnon.

To xipro pépog 100 GpBpov mpaypatedetar TNV AvoxaTookevn Tiig
peB6dov tob Evd6Eov, 1| omoia, Stav Epappochi oté thavntika
and mopatnpioels ded o p £ va («yia va cwbolv ta paivopevar), divel tig
AOTPOVOUIKES TIHEG TV mupupétpwv. L' abtéc mepriapPavovial xai mHa-
YHATIKEG, EpMEIPIKEG TINES (pepikeg amo Tig Omoleg elvur pdilov axpifeig
Kail GAdeg teheing mhaopatikég). "H émrtuyia tfig dvakataokeviic propel vi
kpOf] and to 611 propolv va £Eaybolv axodpa xai ol mhacpatikés TipéG,
Onwg m.y. N andxiion 11 Tpitng opaipag tod "Hiiov.

Ot xvprot tomor Tipudv rtapapétpov mov EENyncav eivat ol T A a v n-
Tikég mepiodot (my. T)? = 1 mepiodog tiig dropkiic xwvijoEwg

g devtepNg opuipag &vog mAavitn, Ti™® = f| mepiodog cuvdvaopévng

Kivnoemg Tiig 0evtepng opaipag £vog mhaviitny xAn.), ol @ 0 p £ ¢ 1OV oQul-
pIKdV teprotpopdv (m.y. D:::F W) =1 aropix) xivnon tiic téruptnc oai-
pag £vog mAavitn npdg dvopdg, kAt.), ol AroxAic el ¢ OV cPUIPIKOV
aEovov xai, avtd ol propel va ovvaydii an’ abtég, ol péyioteg ma p € x-
KAloetg tfig opaipag £vog mAavitn and tov ionuepivd (dmov meptiap-
Paverar xai N tipn tiig AoEotntag 1ijg Exientikiic tob Evd6E0L) kai and thv
EXAEITTIKY].

‘H péBodog 1ol ELd6Eov mou dvaxatackevioape Paciletar ovolaoTti-
Kka ota mbayopika Mabnpatikd katefarape npoondbeieg v deifwpe dti
uropel va Umootnpiydf pé mpotdceig, mov Gviikouv oti Yvwotl] cuufoin
100 Evdolov ot Xroiyeia. "H péBodog danotereital and dvo pépn: pia ava-
Avon xai pia ouvbeon. "Eneldn 1| onpacic tol EVS6Eov avayvepiletar danod
OAoug oyedov toug petayevEoTEpOLS Omadoig tiig pabnpatikiic avaivong
(yia meprocotepeg Aentouépeieg PAéne 10 dpOpo pov The Elements of Anal-
ysis, «Proceedings of the XIV International Congress of the History of
Science», Tokyo /[Kyoto, 1974), xai &reidn) | pébodog tod EvdoEov Ennpéace
M oLyyxpovn @Aocoiky) avaivon kai ocOvleon o peyain Extaon, i dvaxa-
TAOKELT] puropel vi mapovoldln kamoio Evdiaeépov yia tov iotopixkd xai
10 P1A60000 TV DeTikdV Emotnudy. "Axépa, uropel v diepotion M Ao-
YIKT tfig Emotnuovikiic avaxaivync.

210 XEVTpo Tiig Hebodov mol dvaxatackevdoape (xai mov Gnd v GA-
YEPpIxn droyn cuinteital otd napapinua tod dpbpov) Ppioxetar Eva mo-
Bayopixo tpiywvo via x@be mepintwon, diapopetikd yid kabe mhavirn. Ol



Akadnpuia ABnvwv / Academy of Athens

244 Erkka Maula

TAELPEC TOV TUPAyovrial and D0 GYETIKMEC MPOTOVS Avicous dxepaiovs @-
piOpoic p, q pé 10 cvvnbhouivo tpomo, xai 10 1610 1O Tpiywvo Exel 1O poAO
Ponbntikod oyediov of pa yeoperpikn anodeiEn. Toco 1| Pondnrixy ma-
papetpoc n 600 xui 1| Avon otov tomo (30) propolv vie doboliv 6& cuvdptn-
on MPOG TO Tpiywvo avTd, kai ol ywvieg tov xabopilovv tic aEovixég ano-
kAioeig xai tig péyiotec mopexkiioeic. Ol LMoeic oto (30) sivar auetdaBin-
TEG AVUQOPIKE TPOg TO p, q (td dmola propodv va dvopacholv «ol pabnpa-
TikeC otabepés Tiic PUoE®MS») kai propodv va Eaybobv pé tov timo: X vy =
p/q pe xabe mepintwon. "H AMion ovverdyetar v épantopévn (= avalo-
Yl tod yvedpovos mPOS TN OKid TOL) TOV YOVIAV AmoxAiong, m.x. | xai pé-
Yot (Tiun) repEKKAiong m.y. ¢. "YrodnAdvel axopa, oty npaypatikot-
@, T@ XOPLO YOPUKINPIOTIKG TOU aotpovopikod Opyavev (apdyvn), mov
rpnoponoinoe 0 EUdofoc yid va HETPON YOVIOKEC AMOGTACELC, KU AKOMUN
a
2
0dnyel ot Bewpia Tiig orepeoypaikiic tpoPfoiriic, Tpdopopn yid TOV Lmo-
AOYIOHO YOVIGK®V TULLTTOV, ToL Tupuepalovial & cuvaptnon npog Tic
neptodovg 010 (30). "Qotéco ol nepartépe avtéc ovvéneies Tig avaoivieonc
0@ oulnnbolv ardol. 'Apkel npoc 10 mapdv vi mobue 611 | péBodog tol
EV60Eov pnopel va vondf d¢ yeopetpikn épunveia tod yxpdvov xai 611 1
xUpra «ebpetixn» Ponberd tov Onfiple i} mubaydpera avaivon td@v aprBudv.

‘O mivokag OV CNUEVTIKOTEPOV TAPUUETPIKAV TIpdV EEnyeital otod
KeQ. 9. Oa gavi) £ror 6T npaypatt Nueporoyiaxs ntipaete Enolav Eva po-
ro o11] Bewpia @V Epneipixdv dedopévov tod EVS6Eou ki 811 0f KaTaoKEVES
HE Paom v immonédny elyav GTNV TPAYHOTIKOTNTE CKOTO VA TEPLYPAYOLV
Kata npootyyion (7] é€davikevpuéva) Tic nmpoottéc oIV mapatnpnon nio-
vntikeg xivnoelg. Ipénel 6pmg va fjtav kanme ocvykloviotikd yia tov El-
00&0 xai ToUg Omadolc Tov v avuxkaivyouy 6ti pia xai 7| adt) pédodog One-
Loyiopod EEayel MPAYHOUTI MAPUMHETPIKEC TIMEC WOU NTAV APKETE YVOOTES
amd 10 maperBév. Kai 6 timog (1) mpéner vi @avnke G¢ avaxaioyn Evoc
vopou tfic PLoE®S, £VOC VOpoUL, moL dv Kai anioc deiyvel v TovTOIC PE pid
«olxovopikn» épunveia tic otabepic tijc Puoswe. TO EcmTepikd xdiloc Tod
cvctipetoc tod EVdoEov, éviunootaxko axépun xai otiv adpouepi oxiaypa-
¢la mov Emyeipoape oo dpbpo avTd, N driotntae 1@V pebnpotikdv épya-
Aeiwv, | DnepPorikn) @edo t@v EEnyntéov Gpov xal | peyalo@uic £pun-
veia, ot avridieotoln pE 10 mATBoc 1OV Quivopévev mol EEnYel, npénel a-
VETLQUAUKTC V& EYYpa@i] otd EvepynTixd Tijc pevaroouiag tol EVdoEov. ‘H
AUGT) TOL OTO0 KOOHOAOYIKO TPpOPAnua yupaxtnpiletal and Eva ioyvpd ue-
Bodoroyikd poviopod, otov onoio mbavic avagépetot 6 Pilinwog 6 'Omolv-
toc otV "Emivouida (991 e-992e).

10 avtiotpoo tol p /g= tan i = ‘tan —%— (BA. EuvxA. III 18, VI 3), mou
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‘O EvUdooc £Euxorovlnoe Evepyde tic perétes tov oty Kvido @¢ 1o
tehog 11ic Lwiic tov. "O ZtpaPav (¢ 119), axorovbavrug 1ov [Mooeddvio, ava-
pEpel 011 napatipnoe v Kavero (a Carinae). Tobto npopuvdc cuvoietal
pe TNV mpoondbeid touv va Droioyion 1 diaperpo g I'ic. "AlAd Ta pabnpa-
uka Oepérie tiic " EAANVIKTC "Aotpovopiog (kail Tii¢ 101kf¢ puc) Etédnoav doo
mo toyvpa yivotay yid tov EVdoEo pue 11) Bempia tov 1@V OpokEVIpOV opatpdv.

"Otav Bewpion xaveig 11 Oewpia 1OV OpoxkEvipav opaipdv tod EL6-
Eou w¢ obvolo, mupatnpel TNV EVTILTOOoLOKT dapopa tod yewpeTpikod mpo-
TOTOU GO TN QLOIKT TpayHaTiKOTNTE. Oyl povo av1d aAla Kai 1O YE®UE-
TPIKO mAaiclo eival GVETAPKES, OTAV EYN VA KAV KAVEIS PE TOV DXOAOYIOUO
TOVIOKOV TaXLTNTOV Kai JE T4 Katd Ttpoctyyion Eémtevybévia anoteAéopa-
ta. TOo npoéTLRO, (Vv KUl KIVIHATIKO, AMEYEL TOAD AMO 1O VEOTEPO 1davikod
1V QuOoIK®OV npotiTmV, mou mpoonabolv va dratnprioovv 11 duvatdTnTw
gnainbevong (ElEyyxov) o6& Onotovdnmote xpovo. To wpoéTumo
tob Evdofov Opwe «Eocwoe» eve otubepo apBuod paivopévov c € 6 £ 0 o W é-
vo % pOVoOo Kal Eixe mpopnTiky) alia otV wEpinTtwon kabe mAavitn poévo
ot dedopévo ypovo, dnhadn o1d ypovikd onueic dnov N peyiotn mapéxkii-
on &vog miavitn ftav duvatov va nepatnpndiy. Ilaviwg avagopika pé av-
T 1@ «owbévie @Qaivopeve» 10 mPOTLUNO aviamokpivetul MANPOS TPOS TNV
npaypanikotnta. H yAdoou tijg Bewpiag tob EvdoEov exbBeter tnv i6én Tob
royixkob 1 «onuaviikod» atopiopoll o wpiopevous otabepolc ypovouc.

Mmnopel xaveig va xataiapn tnv aroyn avin yua tnv yAdoou oE ouy-
KpLoT HE oLYYPOVES TNG Oewpieg «Znpavtixijcy otijv EAANVIKT QlAocopia
(tpBA. The Semantics of Time in Plato’s Timaeus, «Acta Academiae Aboen-
sis», vol. 38, No 3, 1970). I'ta toug IMuvBayopeiovg 16 6Ao ochurav eival TAf-
pec apOudv (npPr. "Aprot. Metap. 1090 a 20 én.), aAra 1dn yia tov "Apioto-
TEAN T4 TEPLEXOpHEVE Kul TOV dUO «KOUTIDV», TOU TO Eva TEPLELEL TT] YADOOU
Kai TG YAwoolkd ntpétunae Kal 10 dAlo TNV mpaypatikdéTnIa, eival dSlapope-
TIKd. Mrogolpe oyedov va yniapicope 1@ onueia tic dwwpopic. Z1o Hepi
obpavod 0 "Aprototédng ouvlntd ) duvatdtnta Tig Kivnong tdv Aotpev Kai
tiig TpoY1dc Touvg avegaptnrta amo T petaEd TOug OYEDT), EVD HEYPL TOTE EVag
nAaving Kai 1) o@uipa tov oxnuatifav evotnta, Eve QUOIKO odpa, ba Aeyape.

"AlA@ xai dv axopa dexBolue avtn TNV Kanwe doyetn id€a TV QPLOI-
x@v copdtov, YeYovog mapapével 0Tt 10 mpoétumo tol EbdoLov Pproxotav
of TANPN avramoxpion HE TNV TpaypeTikoTnTta poévo ot dedopévoug ypo-
voue. Nati Pefaieg xavévae Quoikd odpa d&v Pmopel va TEPIOTPEPETAL Td-
v ot TPELS 1| t€ooepes oPuipec HEO LU Q O P E T 1 K € ¢ AKTIVEC OLYYPOVEC.
Kai eiyav mpaypatt dagopetikeg axtivee, dmwg capdg mpoimobétel 6 "A-
PLOTOTEANG (TUpd TOUS OLUPOPETIKOUS IOYUPLOUOUS VEDMTEPOV CLOALATTOV),
yiati auto eival ovo1ddeg, OTav yivetul ypNon CTEPEOYPUPIKDY mpofolrdyv
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oTOV DmoAoyiopd TV Yoviexdv tayuvtitov. "Ev toitoig f| «oniypiaio» ouvp-
povie Tod rtpotimov tod EVd6Eov pé 1d «owbivra eaivopevar, 6mws Eniong
Kai 1| Evivnoolaxa cvykexpipévn peéfodoc tov availvong (1 £v dyel kai tév
anoteiecpatwv tod A'rpad Szabd davagopixa pE Tig drapyic TV Opwv a-
noodeilig xal deiCic, B Enpene va wolpe 1) Omtikn pébodog avaivong tob
E066Eo0v) elval E€aipetika anoteleopatika Bewpnrixa £pyaieia.

Eival ocuverdc peyain 1 yapa pov mob unopd va xAsiocwm 10 dpbpo al-
10 émonuaivovtag 611 1| otdon TpoC T TPOTLTA KAl T CLUEOVIA TOUG pE
™V npaypatikétnre frav axpifdc tob tomov, mou £Bewpeito avayxaioc
otiv "Axadnpic tod I[Midrwvos (npPi. "Apiot. Metap. 990 a). INati N «Oro-
feon Epyaciagy pov otd dpbpo adtd Nrav axpifpdg 6t 6 IMAdrev otov Ti-
pato ypnoiponolel ) fewpia tod Evd6Eov dg mhaicio dvapopdc yiud TV daro-
OTMACUATIKT] TOL aotpovopia. Ltov Tiuate avexalvya tig vokelg yia ta INMo-
Bayopika tpirdd xai yia 1) AoEotnta tiic éxAeirnixiic rol Ebd6Eov (xai 1
ueyalin apupovia tob IMiatwvog diver 0o xAipaxes otV dpdyvy, 11 povol-
K1 Kai 11 YEQUETPIXT] @ppoviky xKAipaxae yid Tic yoviakég perpioeg). 'O
IMAatov 6pwg otov Tipairo 37 ¢ ypnoporoiel 10v dpo dyalua yia T oyton
petakL tig «yuyiic o0 xdéopov» xai @V mAavntdv, xei Exm deifer ailob
(Plato’s Agalma of the Eternal Gods, «Yearbook of the Philosophical Socie-
ty of Finland» 1969) 671 6 6poc dyaiua eivar Bupvonpavin @riocoPik pe-
tapopa otov [Mlatevae, EEmpetika npdogopn va neprypayn T oyéon pe-
ta€b v «wioviovw kol «rpookaipovy gpovikdv ovrothtov. To «dyaipa»
ota yépra tob [MAdrovos and Opnoxevtixn Eyive priocopikn Evvora. Aa-
pnoe Gpeg pepikéc and tic apywxés Opnoxevtikéc amoyxpdoeic me. To
«wityalpa» otov Tiparo 37 ¢ elvar: 1) eixova tol rapadelypatds tov, xai 6 An-
provpyos mpoonubel va 10 xavn axopa OpoldTEPO oTd apyétund Tov, 2) Ki-
voUpevo xai Epyuyo, 3) aviixeipevo yapic 1ol Anuovpyod tou, xai 4) Qui-
VETUL va Asitovpyl] Omws ta Aatpevtika aydipata, ota Omoie Lmotifetan
611 petéyouvv ol Bedtnrteg Tovdayiotov of oTiypés EEdpoeng Tiic Aatpeiac.

TNV TVELRATIKT] auT TV atpodopaipa mapovciace 6 EUdofog Eva yew-
HETPLKO TPOTUTO TOL «EcmIE TG Quivopeva», aAla ot avranokpion He TRV
TPAYPaTIKOTNTE PoOVo o dedopivous xpovous. "Onwg 16601 HETAYEVEGTEPOL
pafdnpatixoi 6 Eddofog onuiovpynoe Eva Opatd mpdéTLRO, TOL 1| EDPETIKT
(neBodoroyixn) akia tov Eyxertar axpifdc otd yeyovoe, 6t 6,midnmrote yi-
vetatl pué 1o mpotumo EEumakovel Eni pépouvg Aboelg of mpofinuata, tov ava-
KaAlvmrovral otV mpaypatikotnra. Aév eivar 10 1610 aidvio idaviko, o610
omoio &miong oxoémevav @iAdco@ol dnws 6 Leibniz xai 6 Wittgenstein pé
TIC TPOOKOAANNUEVES OTOV «ONUAVTIKO» atopioud Bempisg Toue ;
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