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Is there another scientist in the whole history of science whose crafts-
manship has been as deep-plo yetughing terse, as lasting yet prolific, as
Eudoxus of Cnidus’s contribution to the development of mathematical
analysis? Aristotle’s influence has been lasting, too, but since the Middle
Ages mostly retarding, and Plato’s mostly indirect. But as regards analysis,
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Weierstrass and Dedekind, more than two thousand years later, could set
out directly from Eudoxus’s results, preserved in Euclid’s Elementa. Indeed,
Eudoxus «<was a man of science if there ever was one», as Sir Tho-
mas Heath puts it.

What are the methodological insights behind these unique achievements?
There is no extant example of Eudoxuss methods of computa-
tion, no example of his actual use of analysis, although we know some of
his results. Nor do we know more about his methods of proof
than that he perfected the method of exhaustion and used indirect proof.
His methods of invention are utterly unknown. As for his in-
struments, we know the name of one of them only : the arachne.

Thus i1t seems immensely worthwhile to attempt a reconstruction of
Eudoxus’s other great achievements, his theories of mathematical geo-
graphy and above all his cosmological system, in order to obtain new infor-
mation about his methodological insights as well. True, Eudoxus’s astronomy
1s @ most rewarding object of research even in itself because, to quote Heath
again, «no more ingenious and attractive hypothesis than that of Fudoxus’s
system of concentric spheres has ever been put forward to account for the
apparent motions of the sun, moon and planets». For us, however, our
previous reconstructions of Eudoxus’s method of determining the geogra-
phical latitude [7], his astronomical methods and his methods of analysis
and synthesis [8, 9, 10] have served as starting-points for an even more
inclusive reconstruction of Eudoxus’s scientific portrait and dynamic world-
view, containing the nucleus of a dialectics of nature [11, 12].

As an important mile-stone on this highway, we now submit a reconstruc-
tion of Eudoxus’s instrument, the arachne (Spider, mentioned by Vitruvius),
in which his mathematical methods, observational techniques, and heurist-
ic insights assume a concrete manifestation. Being basically a model of
the geocentric system the arachne stands on top of a comprehensive vet
strictly coherent theoretical foundation, which admits also of its other usa-
ges as an instrument for angular measurement, as a mathematical instrument
for instance for the extraction of square and cubic roots, and as an aid in ma-
thematical invention. Yet there is no extant description of it.

On the Sources and Choices.

Our strategy has been to approach the intertwined problems of Eudo-
xus's observational and computing techniques, and their heuristic ideas,
by exploring his astronomical and geographical theories. Although our
reconstructions in these directions have been presented earlier, it may be
worthwhile to dwell on their general character even here. For, as is known,
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there is the now canonical interpretation of the theory of the homocentric
spheres by Schiaparelli, whom most historians of science still follow, and
as regards Eudoxus’s method for the determination of geographical latitude,
the later Hellenistic method is usually taken to account for his few numerical
paraphrases for the latitude, even though the resulting inaccuracies in geo-
graphical location are simply unbelievable and incompatible with biogra-
phical tradition. However, Schiaparelli’s interpretation is essentially qu a-
litative in the sense that he makes conjectures about the unknown
Eudoxan parameter values in order to ascertain a fair correspondence
between the general outline of Eudoxus’s system and unchanging, obser-
vable facts. But he does not attempt a deduction from the known Eudoxan
parameter values to observations, which might turn out to be even grossly
mistaken. On the contrary, Schiaparelli and others in his wake, like Heath
and Dreyer, are willing to jettison even Aristotle’s presumably well-in-
formed testimony on the details for the sake of their own interpretation.
In this process, Eudoxus’s computing techniques must be represented by
qualitative geometrical constructions. It is as well to remember that the
choice between a «geometrical» and a «physical» interpretation is a moot
point (see e.g. Larry Wright, The Astronomy of Eudozus: Geometry or
Physics?, «Stud. Hist. Phil. Sci.» 4 [1973] No. 2), but we cannot consider
such qualitative interpretations satisfactory. For we know for sure that
Eudoxus used at least some exact parameter values, for instance that he gave
the planetary periods in days and years. What we offer instead is a
quantitative interpretation.

Our program for a quantitative interpretation is this: we begin from the
relatively few known numerical parameter values and construct one and
only one method of computation which yields numerical values for all
other Eudoxan parameters described so far only qualitatively. Among these
computed values there are some that represent instrumental observations.
Yet one cannot know in advance, as Schiaparelli thought, whether these
observations were fairly accurate. On the contrary, we know that some
were idealized and some even utterly fictitious, for instance those pertaining
to the third solar motion postulated by Eudoxus. Hence modern observations
(combined with modern mathematics and astronomical tables giving e.g. the
real lozxotes in Eudoxus’s day) will not help usin the way Schiaparelli be-
lieved. For a genuine reconstruction of Eudoxus’s method of computation
and observation must be capacble of reproducing even his idiosyncracies, and
not only the unproblematic, well-known general features of his system.

But even though this could be achieved, the reconstructed method might
do no more than illustrate a possible way of invention —presuming that
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Eudoxus, too, started from just those parameter values that have been
preserved. Pains must be taken to demonstrate that the reconstruction
remains within the general framework of ancient mathematics, just as the
observational instruments must lie within the scope of ancient technology.
Moreover, one must outline a plausible route of actual computations from
the observations to the resulting parameter values.

Now it 1s not likely for instance that Heath would have overlooked any
relevant information in the ancient sources directly pertinent to Eudoxus.
Hence additional, even though perhaps indirect, information must be sought
from related sources. To our delight we have discovered that Plato, Eudoxus’s
contemporary and associate, gives us two invaluable clues in exact numerical
terms in the construction of the world-soul in the 7imaeus. One points to-
wards the methods of numerical analysis in Pythagorean mathematics, the
other towards an exact value for the obliquity of the ecliptic by these methods.
We need not overstress the alleged, though likely, collaboration of Eudoxus
and Plato. Plato’s frame of reference may have been Eudoxus’s system, but,
alternatively, Plato’s world-soul may have given an impetus to Eudoxus’s
cosmology. It is enough to say that this additional information suffices for
our reconstruction of Eudoxus’s methods of computation in astronomy and
geography. For more than one hundred main parameters, including Eudo-
xus's fictitious parameters, can be computed starting from the known pla-
netary periods [9]. It may be added that as far as real observational parame-
ters are concerned, Schiaparelli’s conjectures eventually turn out to be quite
good (in the region of 2°- 3° from the computed ones).

Although the possibility of a mere coincidence in solving such a great
number of exact parameter values is negligible, we suspect that many modern
commentators may still oppose our use of additional information draw from
the Timaeus. We are, however, quite convinced that Plato’s «great h a r-
m o nt a», described in full earnest and most carefully worded, can be tap-
ped for new astronomical information then current in the Academy. For it
can be shown that 1in general, when any two line segments partly
overlap so that both are equally divisible by the overlapping part, their end-
points create a set of harmonious points the ratio of division being either
2:1 or 3:1 (depending on the point of view adopted). And Plato’s «great
harmontan 1s constructed starting from just these basic «double and triple
intervals». This highly interesting result is communicated in [2, 3] and con-
stitutes a major step in our argument for the correctness of our Eudoxan
reconstructions.

We interpret this result in terms of a discovery of Plato’'s rationale
of the «great harmonian, and shall include the use of harmonious points in
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the arsenal of ancient mathematical tools legitimately used in our reconstruc-
tions. In fact we make use of harmonious points both in the scales of the
arachne and in the outline of Eudoxus’s practical computations.

Now it must be noted that harmonious points in the ratios of division
mentioned (2:1 and 3: 1) are obtained as soon as Plato’s basic double and
triple intervals are interpreted in terms of line segments added to one another
(1+2+4+8 and 3+ 9+ 27), and their harmonic and arithmetical
means, together with the additional intervals of 9 : 8 (all of them clearly sta-
ted by Plato), are likewise interpreted and inserted between the basic inter-
vals. And according to Plato, they are so interpreted and inserted [8].

Here, a different arrangement of Plato’s basic intervals in one row (e.g.
1,2,3,4,9, 8, 27) is advocated by Taylor and Cornford, who consequent-
ly see little or no mathematical significance in Plato’s «great harmonian.
But their arrangement is simply in contradiction to the text, for Plato expli-
citly says that when the insertions are executed, the intervals of 3:2, 4:3,
and 9:8 are created, whereas the insertions into the series of the basic
intervals arranged in one row produce an extra, unwarranted interval [8, p.
34). Moreover, the better arrangement in two rows, in the form of a «lambda
-like diagram» (Crantor’s diagram) suggests a value for the obliquity of the
ecliptic (g), which is a central feature in Plato’s astronomical model, in terms
of a Pythagorean, right-angled triangle. For an acute angle (¢) in the triang-
le with the hypotenuse of 39 =3 -+~ 9 + 27, and the shorter side of 15 =
| 42 + 4 + 8 units of (relative) length, is obtainable from tan € = 5:12
or sin € = 5:13. And the same result is also obtained if one begins with two
integers p = 3, q = 2 generating Pythagorean triples, i. e. with the same in-
tegers that figure in the formation of harmonious points by overlapping
line segments, for in this caseC =p* + p* =13, A=p*—q* =35,and B =
2pq = 12, where A2 + B? = C? (and p>q; p, q are relatively prime and not
both odd) [8, 9].

In this way we have deduced the obliquity of the ecliptic
in Plato’s cosmological system in the T'tmaeus, and since this must have been
a central parameter value generally known in the Academy, we further as-
sume that even Eudoxus used precisely this value. Our final results make it
clear that the assumption is correct.

To the possible objection that €510 = 22°37" obtained in this manner
is less than the real value in Plato’s and Eudoxus’s time &pey = 23%44" (see
e.g. D. R. Dicks, Early Greek Astronomy to Aristotle, Ithaka [ New York
1970, p. 154, n. 240), we answer that so it indeed should be in Eudoxus’s
system, for Eudoxus is known to have credited the Sun with a fictitious
deviation from his ecliptic. This implies that the lozotes adopted by Eudoxus



Akadnuia ABnvwv / Academy of Athens

230 E. Maula

was somewhat too small as compared with actual observation. But even
the fictitious additional deviation can be obtained by exactly the same me-
thod [9]. That is to say, we have here a deliberate «theoretical errom, commit-
ted for methodological reasons.

There are ,of course, other interpretations of details based on the addi-
tional information we have drawn from Plato, and other smaller discoveries
about the numerical parameter values of Eudoxus (including a computatio-
nal connection between the synodic periods [9, p. 220]), but this may suffice
to illustrate our use of the sources and some decisions made in their inter-
pretation. More details will emerge from our description of the different
usages of the arachne (below).

Eudoxus's Method of Celestial Computations.

In the theory of the homocentric spheres, the basic problem of explana-
tion concerns the computations needed in the combination of two
spherical motions. If these motions are characterized by angular
velocities, the combination assumes the following form :

ind (W or E) ind (W orE) — mb (W or E)
(1) + o *+ of T of

Here the indices (I, II) refer to two spheres, the indices (ind, comb) to
the individual and resulting motions of these spheres,
and (W, E) tothe directions of rotations. These are among the Eu-
doxan parameters qualitatively described in the tradition. Some of them can
easily be given even an exact value. In fact the problems are not difficult as
far as Eudoxus’s first and second spheres for the seven planets are concern-
ed. The real problems appear in the combination of his second and third,
or second and fourth spheres. Hence we may take these as our examples.
Systematical study of all alternatives is undertaken in [8]. Since ® =1/T,
or the inverse of rotation time, and the directions of the second and third

planetary motions are (partly) known from the tradition, their rotation times
are obtained from:

(2) Tie® = T T : (Tgm> + TR

It is shown in [9] that if an auxiliary parameter n is introduced in accor-
dance with Elementa V. 15, and (2) is considered as a generalized

proportion
(3) T™® T : (Tgmd 4 Tind) — pTeomd ; g

and means are discovered for mastering (3), all Eudoxan parameters cha-
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racterizing the theory of the homocentric spheres can be given exact nume-
rical values.

The solutions have the following form in terms of the sides a,
b, ¢ of a general right-angled triangle, or in terms of two integers p,q gene-
rating a similar Pythagorean triangle in the usual way (p > q, p and q are
relatively prime and both odd):

(4) for xy: (x+y) = nTeomb; p (5) for xy:(x—y) = nTeomb:n
n=x+y =c+b—> (p+q)* n=x—y = ¢—b —» (p—q)*
x=(a+b+c):2 > p (p+q) x=(a—b+c) :2—>p(p—q)
y=(b+c—a):2 > q (p+q) | y=(a+b—c):2 —> q(p—q)
x:y=(atc):b=p:q lx:y:b:{c—a}=p:q

It will be seen that the auxiliary parameter n disappears in the solutions.

How these solutions are obtained by using the methods of ana-
lysis and synthesis (this being a direct contribution to a better
understanding of Fudoxus’s ideas of analysis) is explained in detail in [9,11].
The solutions are perfectly satisfactory as regards ancient mathematical
tools!, and one can hardly imagine simpler solutions than ours. Moreover,
the solution x:y = p:q alone is really needed, and in [11] it is shown that
these solutions, which are invariable with respect to the sign in (3), have a
simple geometrical interpretation. For if in a Pythagorean right-angled tri-
angle tan a = 2pq: (p-q?), then tan (a/2) = q:p by Elementa V1.3. This fact
we have made use of in the construction of the measuring unit of the arachne.

The most-far reaching idea here is the preference of ratios of re-
latively prime numbers for ratios of composite numbers. We
can see this idea develop from integers in the ratio known as superpar-
ticularis, (n-+1) : n, which are met in musical consonances, and again in the
«oblong numbers», (n+1)n = 244+. .. 42n. But already in Archytas’ (who
was Eudoxus teacher) preserved proof that there is no (integer) number which
is a (geometric) mean between (n--1), n we meet also the relatively prime
numbers. A definition is seen in the Elementa vii, Def. 12.

Despite the geometrical interpretation of Eudoxus’s solution x:y =
p:q and its easy instrumental realization, we are still speaking about the
possible way of Eudoxus’s invention, or, if you wish, about the mathe-
matical background of the method of finding the correct solution to (3).

1. The main idea is to let line segments represent periods in the construction of
the right-angled triangles, which implies a geometrical treatment of time. For more detail,
see the figures (1,2) below.—If it is further demanded that p’, @' are rot both odd, a
simple transformation is necessary: p’ = (p+4q):2, q'=(p—q):2. Conversely, p =
p'+q’, a =p—q".
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This heuristic process is described in algebraic terms in [1], and
it shows a most interesting feature mentioned above: the auxiliary parame-
ter n disappears in the synthetic part of the method. Moreover, the general
view on language as a painting corresponding point to point to reality is
suggested—a view that seems to be shared by Plato, too, in his semantics
of time® But the problem of Eudoxus’s practical calculations
remains to be tackled.

Details are discussed in [12]; suffice it to say here that the problem can
be solved within the general framework of ancient mathematics. For we have
seen that Plato’s «great harmonia» was constructed by means of harmonious
points (the ratios of division being 2: 1 and 3: 1), and by their means also
the practical calculations can be made. The following examples are intended
to illustrate these calculations.

[M oon] By means of the arachne, the Moon’s maximum deviation
from the Eudoxan ecliptic can be observed and measured in terms of tan
(¢/2) =q:p=1:29. Let p: q now stand for the ratio of division in harmo-
nious points, and note that calendaric considerations also suggest the «idea-
lized» observation, for (p+q):p = 30:29 is equal to the ratio of the «full»
and «hollow» months, i.e. 30 days: 29 days®. Thus we have the following
situation describing the combination of the second and third lunar motions
(diagram not to scale), where t w o periods can be solved starting from one
(postulated) period and from the angular measurement, the directions of
rotations being determinable by the Eudoxan tradition (westward).

Xy 2 Tcgmb
X+y = ' 111

Fig. 1: The lunar triangle

The points A,B,C,D form a set of harmonious points (A,B;C,D) in the
ratio of division p:q =29:1, and BD =y = 30 (days) = the «full» month
is pestulated = Temd tan (af2) =q:p=1:29 representing an
«idealized» observation by means of the arachne.

2. See E. Maula, On the Semantics of Time in Plato’s Timaeus, Ann. Acad. Aboensis,
Ser. B, Tom. 169.1, 1970, Abo/Finland.
3. This is obtained by simple transformations of the proportion g:p=1:29.
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Hence AB = a = 840 (days), AD = x = Tiid = 870 (days), CB = 28
(days), BE = CB + BD = b = 58 (days) = ZT*"““":' and AE = ¢ = 842 (days),
while @ = 3°57" represents the Moon’s maximum deviation from the Eudo-
xan ecliptic, and remains within the limits of Eudoxus’s observational error
(19— 3°, according to Hipparchus’s criticism). Here a® 4- b® = ¢* of course.
The central role of this right-angled triangle in Eudoxus’s method of ana-
lysis and synthesis is explained in [9], and its possible bearing on the emer-
gence of the theory of stereographic projection is discussed in [11].

[Sun] The Sun, too, is credited with three motions owing to a some-
what too small numerical value given to the Eudoxan lozotes. It can be ga-
thered from the Eudoxan tradition that in the case of the Sun the direction of
the third (individual) solar motion is eastwards. Hence the Sun represents the
second possibility as regards the sign in (2). Otherwise we follow the same
procedure as in the case of the Moon. An «idealized» observation by means
of the arachne gives the Sun’s maximum (fictitious) deviation from the
(Eudoxan) ecliptic, which is visualized by the same instrument, as tan (B /2) =
—q:p=1:91, where 91 (days) is the length of Eudoxus’s equalized seasons.

Xy — T comb
X —y I11
/
/
I!I h
i’ T |
B = 1“ 15-5 E‘::—..._.n_..-.,_' ol
A C B D

Fig. 2. The solar triangle

Hence we obtain the following situation (lines not to scale). (A,B;C,D) is
a set of harmonious points, the ratio of division being 91 : 1. Here CB = T300b
— 360 (days) is postulated in advance. Hence AB =x+y =2 —33]2{}
(days), x = 32760 (days) = T3 = the Sun’s ‘long period’ implied by its
«slow» Eudoxan motion, BD = 368 (days), BE = CB + BD = 728 (days) =
2TgoeY, and ¢ = 33128 (days), while p = 1°15.5" represents the Sun’s ma-
xlmum deviation from the Eudoxan ecliptic and, being obtained by the
same method as Fudoxus's other angular parameter values, speaks out
strongly in favour of our reconstruction of Eudoxus’s method of compu-
tation. So also does the obtained value T*ﬁ"{“'* — 364 (days), for it is well
known that notwithstanding the discovery of the inequality of the astrono-
mical seasons by Euctemon and Meton some sixty years earlier, Eudoxus

equalized them. Hence 364 = 4 x 91 days may well be called Eudoxus’s
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“seasonal year’, this being an example of Simplicius’s use of the term year
in two senses, justas month stands for both 30 and 29 years®. As Eudo-
xus was interested in calendaric considerations also, there is no need to
suppose that his cosmological time-reckoning contradicted the celendar. Nor
does it conflict with observation either, for the ‘long’ solar period is too
long to be observed.

The practical computations and observations by means of the arachne
follow the same pattern in the case of the other planets also. The resulting
cosmological model, however, offers some surprises, as explained in [9,11].
For the model is in full correspondence with physical reality at given times
only —not always: an extraordinary temporal relation aptly characterized
by the Platonic metaphor of agalma [4], which Plato himself uses for the
model of the geocentric system in the Timaeus.

It is obvious, though, that the solutions (4,5) readily follow from consi-
derations regarding harmonious points, and we are inclined to interpret
Proclus’s commentary on Eudoxus continuing Plato’s work on the se c-
tion (On Eucl.I, p.67) as referring to harmonious points created by over-
lapping line segments, i.e. created by two line segments cutting each other
into two in a special way. Be that as it may, we now have outlined the theo-
retical foundation of the arachne, and these are the main points of interest:
the solutions to (3) in terms of x : y = p : q can be given an instrumental inter-
pretation tan (a/2) = q:p; harmonius points occur both in the practical
calculations and in the scales of the instrument; and an algebraic desc ription

of the heuristical aspect displays the disappearance of an auxiliary para-
meter in the course of the methods of analysis and synthesis.

The Ingenious Spider.

«There is a third species of this animal, pre-eminently clever
and artisticn, Aristotle, Hist. Anim. IX,39 (of the «geome-
trical» spider).
We have built an instrument by means of which one can measure precisely
those observational parameter values that Eudoxus needed in his astronomy

(Fig. 3). Its construction does not in any way exceed the ancient technician’s
skills®,

4. Moreover, Eudoxus’s "seasonal year’ is another example of his deliberate «theore-
tical errors», made for methodological reasons.

5. A model for demonstrative purposes (scale 2:1) was built at the workshop of
Physics, University of Oulu, by Karl Sandman, Kauko Higg, Penth Tiitta and some
students of the history of science in the spring of 1976.
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Fig. 3. The arachne, general view.
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The instrument consists of four main parts. (1) A stand permitting
rotation about two ortogonal axes supports (ii) a meridian circle
adjustable and lockable at any position in two dimensions and supporting
in turn (iii) a circular plate rotating about the diameter of the
meridian circle, with respect to which the plate can be adjusted and locked.
Alternatively, the circular plate can be attached to the stand, in which case
the circle may rotate about the diameter of the plate. On top of the plate (iv)
the measuring unit resembling the sliding callipers turns about a
gnomon. In addition there is a plumb hanging from a string (stathmés) for
purposes of calibration and to demonstrate certain angles. If the measuring
unit is removed, the instrument looks like a big bronze mirror, and one may
well call it an enopiron after a lost work of Eudoxus. In the measuring unit
and the plumb-string one may perhaps see a spider and its thread, and
hence call the whole instrument an arachne. We presume that if there really
was an instrument or a cosmological model on Plato’s table (see Cornford’s
Plato’s Cosmology, London-New York 1971 [1937], p. 74 ff.) it might have
been of this type.

On the circular plate two scaled axes are grooved (in addition to certain
curves, perhaps, which we shall discuss below); there are thirteen units in
all four directions measured from the centre to the perimeter. In the main
trunk of the measuring unit and in its two arms there are both unit scales
and also others based on harmonious points [2,3]. An auxiliary trunk, mo-
ving parallel to the main trunk, has no scales but is provided with sights
(diopira).

The measuring unit perhaps merits a separate picture (Fig. 4). It is not
necessary to engage in entomological debates on the precise number of a
spider’s feet. Suffice it to say here that while the main trunk (0) and the two
arms (M,N) at right angles to it are essential in all usages, the auxiliary
trunk (P) is only needed in the demonstration of a parallel to the main trunk.
As this could be done by means of the string or a separate ruler, too, (P)
is perhaps superfluous. In any event the motions of the parts are indicated
by small arrows. (M) and (N) move parallel to one another, and can be lock-
ed with respect to (0). Finally, it is advisable to attach a runner (R) to both
(M) and (0) so that the string may run via them.

In fact, the measuring unit may be conceived of as consisting of four
gnomons, and its correct place in the history of astronomical instruments

is between an ordinary gnomon and a cross-staff or Jacob’s staff. By means
of the arachne, however, observations and calculations can be executed

which exceed the capacities of these kindred instruments. It may be noted also
that although the arachne combines certain functions of rulers and compas-
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tig. 4. The arachne, the measuring unit

ses, it preserves also the character of a cosmological model and simultane-
ously a real instrument permitting heuristic experiments in a sense that
escapes the rules and compasses in the axiomatized Greek geometry. Its
more ordinary usages, and the obvious usages as a gnomon or a sun-dial,
we shall not discuss.

The Angles of the Heaven.

It is possible to measure the angle between any two visible celestial
or mundane objects or the angle between an object and any of the great
celestial circles, by means of the arachne, but we demonstrate an even more
representative measurement in ancient astronomy, the measurement of a
star’'s angular distance from the horizon. Eudoxus is reported to have ob-
served Canopus (¢ Carinae) in Cnidus (Strabo C 119 after Poseidonius).
Hipparchus (In Arat. p.114,20-8 Manitius) says that Eudoxus put Canopus
exactly on the «always invisible circle» and that this was not correct because
Canopus was invisible in Cnidus (lat. 36°43"). Hipparchus's criticism shows
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that he had not yet discovered precession, for in fact Canopus was barely
visible in Cnidus in Eudoxus’s time (its declination was —52.8° according
to U. Baehr’s tables Tafeln zur Behandlung chronol. Probleme, Karlsruhe
1955).

In the period between Eudoxus and Hipparchus, the positions of the
stars relative to the celestial sphere had been changed due to the precession,
[8, p.10] Eudoxus’s special concern with Canopus is probably connected with
his attempt at an estimate of the diameter of the Earth, for Canopus is an
easily recognizable object which Eudoxus must have observed even in Egypt.

Presupposing that the two observation places are on the same longi-
tude, one can compute from two such observations their angular distance®
measured in parts of the whole meridian (and if their distance is measured
in stadions, the meridian’s length in stadions can be computed, too). And
it 1s possible that just the meridian circle of the arachne has given rise to
the idea of the division of the circle.

I..'!
2
"1-,..'1

Fig. 5. The arachne, measurement of a star’s angular distance from the horizon.

Be that as it may, the observation technique is shown in the attached
figure (Fig. 5). The observation is made by means of the dioptra, and

6. Because Canopus is put on the antarctic circle, the angular distance between
the Cnidian and Egyptian observation sites would be equal to Canopus angular height
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the angular distance from the horizon appears as a, the acute angle at
centre. The corresponding angle at the circumference (a/2) can be demostrat-
ed by the string, and tan («/2) = q: p read from the scales of the measuring
unit. Since the arm at right angles to the main trunk can be moved with re-
spect to the trunk, it is quite likely that in some position the ratio q: p cor-
responds to the prefixed lines of the two scales. If indeed the division of the
circle was developed in this way, then, since tan (a/2) = q: p is a ratio of
relatively prime numbers, the circle may first have been divided into eight
(because tan 90°/, = 1:1) or into twelve equal parts (because sin 60°/,
1 :2). This idea is corroborated also by Eudoxus’s method of exhaustion.

EFudoxan Shadows and Hours.

It was customary in the Hellenistic period to indicate the geographical
latitude of an observation site by speaking about either (i) the ratio of the
length of the longest day of the year to the shortest night or (ii) the ratio
of the two parts of the tropic divided by the horizon at the summer solstice.
When the well-known Hellenistic method for the determination of the geo-
graphical latitude is used, these two locutions become synonymous. The pre-
suppositions of this development are discussed in [7], where it is also shown
that these two locutions could not be considered synonymous before the
equalization of hours in the Hellenistic period, and certain other conven-
tions. For Eudoxus they must have meant two different things.

Now it 1s known that Eudoxus gave two ratios of the tropic divided by
the horizon at the summer solstice, K, =5:3 and Kss= 12 : 7 (Hipp.
in Arat. 1, 2.22, 3.9.). It is shown in [7] that if exactly the same value for the
obliquity of the ecliptic is used as the one which we deduced from Plato’s
Timacus, these two ratios correspond to the latitudes of Babylon and
Egypt (the ruins of Babylon and Alexandria). The accuracy is even better
than that obtained by the later Hellenistic method (the error being some
16"). The principles of the reconstructed Eudoxan method are illustrated
(in the case Kss = 5:3) in the attached figure (Fig. 6). In modern terms,
if R = 12 = radius of the summer tropic, in the case Kss = 5: 3, then P'Q
= Rcos B, OP' = Rtana, and tan ¢ = QP": OP" = Rcos p: Rtana. Hence
cos f = tan ¢ tana.

It is seen that the use of this method presupposes that the celestial pole

from the horizon in Egypt. But a further step is needed to interpret this in terms of parts
of the circle. Besides the measured distance between Egypt and Cnidus must be replac-
ed by the same multiplied by the cosinus of their angular longitudinal distance.
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.‘Fig._ﬁ. The celestial sphere with observer at O, horizon (HH), diameters of the winter
tm;-ur.-. (WW’), equator (EE’) and summer tropic (88’), declination of the equator to the
horizon at the equinox (o), the auxiliary rectangular triangle which Eudoxus probably
used (SOP’) and which determines the value given to the obliquity of the eecliptic (a),
half the night arc (g) corresponding to the division of the summer tropic on the point
Q in the ratio 5:3 (ie. K,,=5:3) at the summer solstice. Parts of the diagram below
the horizon marked with dotted lines.

P can be determined at the summer solstice. How this is accomplished by
means of the arachne is shown in the next figure (Fig. 7). The ratio Kss
— a: b can be read from an ordinary scale on the arm because the instru-
ment indicates both the horizontal plane, diameters of the tropics, the obli-
quity of the ecliptic, and the celestial pole at the same time.

The value of this argument gains in strength because Hipparchus's
remarks in his commentary on Aratus are independent of the other traditions
partaining to Eudoxus’s theory of the homocentric spheres. Moreover,
Hipparchus seems to be drawing on Edoxus directly, repeating his results
as they stand and not trying to reconcile them with later observations, for
he obviously does not know Eudoxus’s method?. A similar case is Hippar-

7. Owing to a different method, Hipparchus's interpretation of Kss differs from that
of Eudoxus’s, although even in Hipparchus method we obtain a formula of the type
cosp = tan ¢ tane; see [7]. But in Hipparchus P is half of the night-arc, half of the
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Fig. 7. The arachne, the division of the tropic by the horizon at the summer solstice (a:b)

chus’s wrong conclusions from Pytheas’s gnomon value Gss = 120 : 4]
4/5 for Massalia. Hipparchus’s surprising miscalculations (error 2°) suggest
that he had access to data computed in a way quite different from his.

It 1s most interesting to observe in this and in the previous case the
change of the point of vie w. Thisis further manifest in the two
ways of attaching the arachne to its stand either for meridian observations
or else for observations pertaining to the other great celestial circles. But
because the arachne is not only a model of the geometric system, but also
a mathematical instrument, the choice of the point of view enables one to
measure a number of planetary motions with respect to the great celestial
circles also. Actually this freedom of choice of the point of view is antici-

pated in Plato’s Myth of Er in the Republic X, where the geocentric system
1s viewed from above.

The Geometrical Score of the Harmony of the
Spheres.

Owing to the scales based on harmonious points (the rations of divi-

angle at which the night-side of the earth is seen from a point directly above the north
pole, while in Eudoxus it is half of the arc of the tropic below the horizon at the summer
solstice seen from the centre of the plane of the tropic (point P’ in Fig. 6).

16§ @®IADEODIA 5-6
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sion being 2:1 and 3:1), of the measuring unit, the arache can also
be used in determining proportional angular distances between stars. In
this type of observation one tries to find quadruples of starts on a line
corresponding to sets of harmonious points on the scales of the instruments.

At least two motives can be suggested for this type of observation: (i)
an astronomer, especially one associated with the Academy, may wish to
show that the starry heavens are constructed according to principles of geo-
metrical harmony (which does not exclude the musical harmony, as can be
seen from the musical intervals used in Plato’s «great harmony»), and (ii)
an astronomer operating without proper star-maps, and hence obliged to
refer to fairly inaccurate and changing descriptions of the constellations, may
wish to specify and standardize these descriptions starting from principles
of geometrical harmony.

Looking at the extant material pertaining to Eudoxus’s (lost) books
Phaenomena and Enoptron (fragments 1-120 in Lasserre’s Die Fragmente
des Eudoxos von Knidos,1966), one can hardly doubt that Eudoxus was
occupied with problems of specification and standardization although, as
is the case elsewhere too, only some of his results are known while his me-
thod must be reconstructed from these. In uncertain cases, though, for in-
stance when the location of a special star in one or another constellation
(with respect to the great celestial circles or the tropics) must be decided
upon, it is quite natural to apply geometrical principles. Suppose that three
stars unquestionably belong to a constellation and form three points of a
set of harmonious points. A fourth star corresponding to the fourth har-
monious point on the scale, may then be grouped together with the previous
ones. If one consults modern star-maps and the list of stars mentioned by
Eudoxus, this procedure suggests itself. It is worthwhile, therefore, to show
that harmonious points can indeed be defined in terms of Eudoxus’s contri-
bution to Euclid’s Elementa, Book V.

Let us consider similar triangles of two different kinds (Fig. 8). Suppose

G that the line segments EC, CF are equal.

Then on the one hand the triangles ACE

\ and ADG, and on the other hand the tri-
\ angles CFB and BGD, are similar. Hence

A C 8 D the points A, B, C,D form a set of har-
v monious points (A, B; C, D). In order to
Fig. 8. Harmonious points derive the condition for harmonious points,

we now take any equimultiples of the line
segments AD and EC, and any equimultiples of the line segments AC and
GD. Let the former equimultiples be, for instance, halves of, and the latter
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equimultiples double, the corresponding line segments. Then the equilmul-
tiple of AD falls short of that of EC, and the equimultiple of AC falls short
of that of GD. Now, by Elem. v, Def. 5, we obtain the proportion (1)
AC:AD = EG: GD and the proportion (2) CF: GD = CB: BD. Since
EC = CF, we obtain further by Elem. v. 7 the proportion (3) EC: GD =
CF:GD. From (1) and (3) we obtain by Elem. v. 11 the proportion (4)
AC : AD: CF = GD, and from (2) and (4) by the same proposition the pro-
portion (5) AC:AD = CB:BD. Finally, from (5) we obtain by Elem.
v. 16 the proportion (6) AC: CB = AD : BD. This is the condition under
which the points A, B, C, D form a set of harmonious points (A, B; C, D).

As for the interrelations of the line segments partly overlapping on the
scales of the measuring unit and the angles, these are best represented by
means of the line segments and the tangents of the angles (for tan a= the
ratio of the gnomon to its shadow). We obtain several interrelations which
are illustrated by the attached figure (Fig. 9). We list some of them below.

(i) tan (a-p): tana = a:(a-d), where
3 b the coefficient (a—d)®: ad gives the ratio
— P of division, (i) tan (a-+B+y): tan (a-+p)
i o = (a-+b—d):a, where the coefficient is
A R a:(b—d), (iii) tan (a-+B+7): tan a= (a+b
S~ o1 —d)(a—d), where the coefficient is (a—
5 45 NS | d):(b—d), (iv) tan (p-+wy): tan p=Db:(b—d),
A | where the coefficient is (a+b—d):b, (v)
Fig. 9. The interrelation of angles tan (8+9+y): tan (¢+y) = (a+b—d):b,
and harmonious points where the coefficient is, contrary to the
previous case, b:(b—d), and finaly (vi)
tan (8-+¢@-4y): tan y= (a+b—d):(b—d) or the ratio of division of the line
segments, the end-points of which create the set of harmonious points (A,
B 13).

It is interesting to note that if the ratio of division i1s denoted as p:q,
then b:a = 2pq:(p®—q?) = tang, while q:p = tan (§/2), where £ is an acute
angle and a,b the two shorter sides, of a right-angled triangle. This creates
a connection between harmonious points and the solutions (4,5).

For whereas in terms of the line segments partly overlapping the over-

__ Va1 he
a+b ZVH il » in terms of the right-angled triangle

lapping part d =

a-— h—_c
2

tios of the tangents (i-vi) can be interpreted in terms of the sides of the right-

again }a?+b? =c or the hypotenuse. Hence d = , and the ra-
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angled triangle. But, furthermore, by means of the solutions (4,5), they can
be interpreted also in terms of periods. Perhaps we have here an example of
Eudoxus, who «was the first to increase the number of the so-called general
theorems» (Proclus, On Eucl. 1, p. 67).

Irrationality and Invention.

It is well known that the ancients had discovered not only theoretical
geometrical solutions but also practical instrumental solutions to the problem
of the two mean proportionals, whichisa:x = x:y = y: b. The main sources
are Pappus’s Collectio, Book 3 (ed. F. Hultsch, Berlin 1876-8, Band 1, pp.
56-64), and Eutocius’s commentary on Archimedes’s De sphaera et cylindro,
Book ii, Prop. 1, appearing in J. L. Heiberg's critical edition of Archimedes’s
Opera (Band 3, Leipzig 1915% pp. 54-106). The whole tradition seems to
derive from Eratosthenes’s Platonicu s, and through him from Eude-
mus (see Lasserre, op. cit., p. 163 ff.).

We are especially interested in the so-called Platonic solution and Eudo-
xus’s solution. The former (instrumental) solution is discussed by J.E.
Hoffmann in Uber die sog. platonische Konstruktion von Kubikwurzeln,
«Sudhoffs Archiv» 58 (1974), pp. 60-63. But by means of our reconstruc-
tion of the arachne, too, square and cubic roots can be extracted. We submit,
therefore, that the so-called Platonic solutionto a: x = x:y = y: b and Eudo-
xus’'s solution are identical, albeit the arachne, in addition to illustrating the
proof, also suggests the method of invention preceding the proof.

It is true that Heath (A History of Greek Mathematues, 1, pp. 255-258)
concluded that the so-called Platonic solution was invented in the Academy
by someone contemporaty with or later than Menaechmus, Eudoxus’s pupil.
But Heath’s argument depends on the fact that in analytical terms the for-
mer solution, being found by means of a curve of the third degree, is more
difficult than that of Menaechmus, which is found by means of the intersec-
tion of curves of the second degree (either two parabolas or a parabola and
a hyperbola). It is not the Cartesian analytical treatment, however, but the
use of the instruments®, which must be considered here. For Plutarch (Mar-
cell. 14, p. 59 f., Sint.) tells us that Eudoxus used «machines» constructed on
the basis of geometrical theories, especially on the theory of the two mean
proportionals (see RE, s.v. Eudoxos, §4). Besides, Plato (at Tim. 32b)

8. Or, in other words, it is the simplicity of the condition of the modern equations,

in terms of the use of the arachne, which determines the «degree of difficulty» of the solu-
tions.
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seems to refer to the problem of the two mean proportionals and to its
solution as to something well known.

In addition to the use of an instrument, two main points emerge from the
tradition pertaining to Eudoxus’s solution (D 24-29 in Lasserre). First,
Fudoxus used «curved lines» (kapmOdar ypappai) in the discovery of
the solution, but did not refer to them in the proof. And second, Euto-
cius criticizes Eudoxus for having confused a discrete proportion (e. g.
a:b =c:d) with a continuous one (e.g.a : b = b : c). Earlier commentators
have never succeeded in combinig these two features (see Lassere, op. cit.,
pp. 163-6, and Heath, op. cit., i, pp. 249-251). Yet both can be understood
when the use of the arachne is considered.

Leaving aside its more obvious use in the extraction of square roots,
or the finding of one mean proportional, we will concentrate upon the
cubic roots. The fact that even square roots can be extracted, this being a
special case of the more general problem of finding two mean propo rtionals,
should be remembered, however. For it is from the connection between the
problems of one mean proportional and a d0vapig taken in the sense of a
quadratic value of a rectangle (see Arpad Szabo, Anfdnge der Griechischen
Mathematik, Miinchen-Budapest, 1969) that we have continued our studies
pertaining to the dynamic world-view in
[12]. A mediating step is the reconstruc-
tion of Eucoxus’s arachne, as we shall
see presently.

Let us outline first the proof of
the so-called Platonic instrumental solu-
tion, which is possible as soon as the
instrument has reached a desired posi-
tion. If a=1 and b=2, say, the solution
toa:x=x:y=y:b appears as in the
attached figure (Fig. 10).

Because the angles AOM, MON,
NOB, AMN and BNM are right ang-

Fig. 10. The Platonic solution  jeg the triangles AMO, MON and NOB
are similar, and their respective sides
proportional. Hence it can be proved (without any «curved lines») that,

in modern terms, 1:3)/2 =23)/2:3)/4 =3)/4: 2. In other words, one has

obtained by means of the arachne two approximations: x = 3)/2, y =~ 3//4.
But how will the desired position of the instrument be found? In other
words, what is the heuristic insight succouring the proof? Speaking abow
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the connection between Menaechmus’s solution and the so-called Platonic
solution by means of a «machine» consisting of two right-angled rulers,
Heath (op. cit., i, p. 257) notes: «That it is possible for the machine to take
up the desired position is clear from the figure of Menaechmus, .. ., although
to get it into the required position is perhaps not quite easy». We can, ho-
wever, suggest even two procedures leading to the required position, and the
latter one of them explains the alleged confusion of a disccrete proportion
with a continuous one, while both explain the use of «curved lines» occur-
ring in the heuristic part but disappearing in the proof. It may be added
that these methods were found in a «practical» way, i.e. by the use of the
reconstructed instrument. The analogy between these heuristic ideas and at
striking disappearance of the auxiliary parameter n in dealing with the com-
binations of spherical motions in the theory of homocentric spheres by means
of the methods of analysis and synthesis [1,9] is conspicuous, however.
It would seem that Eutocius, by chance, refers to the very hallmark of Eu-
doxus’s methods of invention.

The Spiders Two Dances.

In the first method the measuring unit is released from the
gnomon, and the plumb-string (but not the auxiliary trunk) of the arachne
1s needed. We illustrate the steps of the method by simplified diagrams.

1°. One makes the initiative (first) guess (x,), i.e. one makes the
arms of the instrument go through the points A, B and keeps the apex M,
of the right angle AMN on the axis of the enoptron. Now the apex of the
other right angle, N,, does not meet the other axis (Fig. 11). A perpendi-
cular is dropped (by means of the plumb-string) from N, to M,B. From simi-
lar triangles AO:M,;0 = M,0,:N,0, = N,0,:BO, or, in other words,
AO:x; = (x;—€,):y; = Y,: (BO+e,), where e, =00, is the first error
term. Thusx;is too great bye,, as compared with the final, required
solution.

Fig. 11 Fig. 12 Fig. 13
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2° The second guess is X, = X,—e,. The situation is shown
in the figure (Fig. 12). From similar triangles AO:M,0 = M,0,:N,0, =
= N,0,:BO, or, in other words, AO:x, = (X,+€,):y,:=Y,:(BO—e,), where
e,<e,isthe second error term. Thus x,is too small bye,.

3° The third guess is X3 = Xy+€, The situation is shown in
the figure (Fig. 13). From similar triangles AO:M 0 = M;0,;: N, 04 = N4O,:
BO, or, in other words, AO:x; = (x;—€,):y; = Y45:(BO+e,), where e;<e,<e,
is the third error term.

4° The next guess is X, = X;—€,. The same procedure will, in
principle, be repeated ad infinitum until e, = 0 andt he so-called Platonic
solution is achieved.

These are the main points to be observed. First, the same rationale
is discernible at every step of the procedure (the use of similar triangles),
and it is the same in the final proof-situation also. Second, the method con-
verges whatever the initial guess. Third, the procedure can indeed be in-
dicated by means of a «curved line», on which the points N, are situated.
Noting that if, for instance, AO = 1 and OB = 2, then 1 : OM = (x+OM):
y =v:(2—x), whence OM = (y2 —2x -+ x2%) : (2 —x), the equation of this
«curved line» (of the fourth degree) can readily be obtained. Fourth, at
each step of the procedure, when the proportionality of the sides of simi-
lar triangles is leaned upon, a discrete and a continuous analogia are equa-

Fig. 14. The arachne used as a computer.
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lized. Fifth, the whole method of invention with its increasingly more accu-
rate approximations from above and from below, is remarkably akin to
the known Pythagorean method of approximation to surds by algorithmic
means. The discovery of this relationship seems to prove beyond reasonable
doubt that one of Eudoxus’s methods indeed was of the type adumbrated
here. Its implications for mathematical heuristics and theory-formation are
far-reaching. They pave the way for the epistemology within a dynamic
world-view, which is discussed in [12].

Inthe second method the arachneturnsabout the gnomon on the
enoptron, and the auxiliary trunk is useful (although perhaps not quite neces-
sary). Suppose that we are trying to find the two mean proportionals between
two line segments a,b. Now a is kept in all positions as the distance from
the horizontal axis of the enoptron, measured at right angles from the main
trunk of the measuring unit, and b is fixed on the scale of the main trunk,
measured from the gnomon onwards. (Fig. 14). Thus the end-point of b de-
scribes a circle, and the end-point of a describes a «curved line» (Fig. 15),
while the other end-point of a follows the axis of the enoptron. In this case
the desired position is obtained more «mechanically», i.e. as soon as a rec-
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tangle (completed by means of the auxiliary trunk, say) is obtained. The
rectangle is MNCB.

If one makes a=1, b=2 the conditon for the «curved line» is x:y =
(V x® +y?) :1, whence the equation (of the fourth degree) can readily be
obtained.

It is most interesting to note that when the distance a=1, and the en-
suing curve is drawn or engraved on the enoptron, not only the cubic root
of two, but all cubic roots can be extracted by means of it. Hence this
curve (x%y? = x>4y?) enjoys of special status, and even its basic condition
(«distance = 1») is as simple as ever can be expected. Moreover, if the plumb-
line is used, even the auxiliary trunk may be discharged, and the traditional
position of the so-called Platonic solution is obtained (Fig. 16).

30
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Fig. 16. The Platonic solution by means of the arachne and plumb-line (cf. Fig. 10).

The second method adumbrated exhibits some similarity to Eudoxus’s
way of representing the apparent planetary motions by means of combined
spherical rotations. It is not obvious, however, how Eutocius’s remark on
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discrete and continuous proportions could be accounted for. But Plutarch’s
fits nicely here. And we cannot be very far from the birth-place of Menaech-
mus’s discovery of the curves we call the conic sections, either. Note, for
instance, that the second «curved line» approaches asymptotically the lines
x £ 1=0. But this observation already points toward far more general ideas.

Reflections upon the Mirror.

In order to see how the arachne reconstructed ushersina dynamic
world-view, it is wise to recapitulate the argument amounting to the
reconstruction. The recapitulation may stand for a conclusion, and the
subsequent notes for a plan of future research.

We started from Plato’s «great harmonia» in the Timaeus on the working
hypothesis that the edifice of the world-soul is erected either with Eudoxus’s
cosmological system as its frame of reference or else giving an impetus to
Eudoxus’s system. We then discovered the obliquity of the ec-
liptic (from sin e = 5/13) used by Plato and, presumably also by Eudo-
xus, for the value obtained is somewhat smaller than the real value, but so
it should be, indeed, in Eudoxus. Plato’s harmonic intervals show also that
Pythagorean triples are generated (from p=3, q=2), and, that both acute
angles and planetary periods are expressed in terms of them [8]. Moreover,
the «great harmonia» implies that Plato made use of harmonious
points created by overlapping line segments. For if two line segments
are equally divisible by the overlapping part, the ratio of division is either
2:1o0r3:1,i.e. the basic double and triple intervals in Plato, and conver-
sely [2,3].

That the loxotes obtained was indeed used by Eudoxus, was confirmed
by a study in Eudoxus’s method of determining the geographical latitude,
for using the value obtained two surprisingly accurate latitudes (Babylon
and Egypt) could be computed [7].

The use of this additional information made it possible to reconstruct
Eudoxus’s method of computation in his planetary theories
and, moreover, his methods of analysis and synthesis
and an essential feature of hisheuristical method [1,9]. Eudoxus’s
central problem being the combination of two spherical motions at a time,
the ensuing generalized proportion to be solved is, in terms
of two unknown and one known rotation period, xy :(x+y) = Teomb p:
where n is an auxiliary parameter that disappears in the synthesis [9,10].
The solution to this generalized proportion combines rotation periods with
acute angles and relatively prime integers generating Pythagorean triples
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where the corresponding triangles have the same role as auxiliary drawings
in geometrical proof. For y:x = q: p = tan («/2), where the whole angle a
represents a planet’s maximum deviation from a given plane, e.g. from the
Eudoxan ecliptic.

At this stage we observed a further link to Plato’s world-soul. For
both the ensuing Eudoxan system and the world-soul, which Plato compares
to an agalma [4], display the same characteristics of models that fully
correspond to physical reality at given times only. This discreteness notwith-
standing the reconstructed Eudoxan system fully explains, starting from the
known Eudoxan periods, more than one hundred other main parameters
of his cosmology. The practical calculations can be made with the aid of
harmonious points, combined with actual (or idealized) observation.

Knowing, then, that in the solution to the problem of combined sphe-
rical motions Eudoxus obtained acute angles measured by the tangent of
the half angles, we have rebuilt the arachne which so measures the angles.
Moreover, it can be used in determining the geographical latitude in the way
Eudoxus proceeded, and in the extraction of square and cubic roots. In the
closer analysis of the last-mentioned capacity, the arachne is shown to
account for the so-called Platonic solution to the problem of the two mean
proportionals and also for an Eudoxan heuristic method involving the use
of «curved lines», mentioned by Eutocius. These have the same function
as the auxiliary parameter (n) in the algebraic solution to the problem of
combined spherical motions. Finally, the arachne, being also a (con-
crete) model of the geocentric system (just as Plato’s world-soul is its me-
taphorical model), illustrates in cross section the tropics, equator, ecliptic,
meridian, and the equinoctial points.

Certain pivotal features of the arachne, however, call forth further
study. These are the possibility of changing the point of view
while using the instrument, the preference of ratiosof relative primes
(which may be simultaneously odd) for ratios of composite integers, the
optical quality of the solutions obtained, and the dynamic
character of the heuristic methods discovered.

(I) The possibility of changing the view-point, not only in the sense of
making use of the angle at circumference instead of the angle at the centre,
but even more generally, permits us to look at the geocentric system through
its model. Observations thus may be correlated to any of the great celestial
circles and a given horizon simultaneously, and measurements made by
means of the scales engraved in the circular mirror plate and in the measuring
unit. Moreover, by means of the plumb-string dropped from the inclined
meridian ring (the instrument in that case being supported by the circular
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plate), the plane projections of these great celestial circles can be obtained
and even the hippopede may be produced in plane projection. This points
the way to stereographic projection [11], and ultimately to the Alexandrian
astrolabe. Finally, the change of view-point is exhibited in the connection
between acute angles expressed in terms of tangents of their halves, harmo-
nious points with given ratios of division, ratios of periods in terms of ra-
tios of relative primes, and even musical intervals. That is to say, we discern
a conscious attempt at universal scientific theories. Perhaps the most interes-
ting detail is the use of the basic trigonometrical functions (the nomenclature
being taken of course from the gnomon) anticipating Hipparchus’s work.

(II) The preference of relatively prime numbers (these are met already
in a preserved proof by Archytas) may be the most far-reaching idea connec-
ted with the arachne. When combined with the trigonometrical functions,
they pave the way for the division of the circle. This was perhaps first achiev-
ed in the cases sin (circle: 12) = 1:2 and tan (circle: 8) =1: 1, and the for-
mer division may have been further developed on the analogy of the Egyp-
tian calendar. According to the tradition, of course, the degrees were obtain-
ed from Mesopotamia in the second century B.C. (cf. Attalus Rhod. ap.
Hipp. In Arat. 2.1.5 ; Boker, «Berichte u. Verh. der Sidchs. Akad. der Wiss.».
99, 1952, H. 5, p. 52 ff, tried to show that Eudoxus’s pupil Callippus inven-
ted the system). But on the one hand the method of exhaustion, perfected
by Eudoxus, implies the idea of the division of the circle by means of regular
polygons inscribed and circumscribing the circle, and on the other hand this
1s suggested also by the division of the longer side (lenght 360 units which
may represent days) of the Platonic right-angled triangle giving the obli-
quity of the ecliptic by Plato’s harmonic intervals [9].

Another implication of the relative prime numbers is their (heuristic)
use in numerical analysis preparatory for axiomatic geometrical analysis.
We have met ratios of relative primes in the solution to Eudoxus’s problem
of the combined spherical motions and in the ratios of division in harmonious
points. But they are met also in the Pythagorean method of obtaining appro-
ximations to surds, which can be generalized so as to apply to square roots
of all integers [12]. This strongly suggests that the main idea underlying the
use of relative primes is the constructivity of numbers. We can follow this
development from Pythagorean musical intervals to their oblong numbers
(n+1)n =244+4...4+2n,and tothe superparticulares (n4+1):n
(as in Archytas), not to speak the Pythagorean analyses in terms of «the
odd and the even»®. Further philosophical applications may be expected in

9. A fragment of Philolaus (Stob. Eecl. 1. 21. 7E) says that «number is of two special
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(Xenocrates’s?) «indivisible lines» and (Plato’s?) «ideal numbers» [6] provi-
ding, perhaps, an analogy for Plato’s semantical concepts of Svopa and pfi-
ua. In short, the relatively prime numbers seems to be a sub-set of positive
integers having several desirable properties in heuristical methods, and lend-
ing themeslves readily to various models in philosophy.

(TIT) The optical character of all manipulations of the arachne is partly
due to the fact that several central problems of ancient mathematics can be
demostrated and solved by it, and partly to the fact that celestial objects are
seen as reflections in the circular mirror plate (éromrpov). The Enoptrika,
the title of a lost work of Philipp of Opus, may suggest that a school of «opti-
cal geometers» was active in Plato’s and Eudoxus’s time. And of course
Plato himself compares the receptacle-space to a mirror in the T'imaeus,
which may account for the passages on mirrors and the mechanism of sight
in the dialogue [5]). Moreover, it is well known that also Eudoxus wrote a
work called the Enoptron. The mirror ensures that reality is depicted.

We have already mentioned the possibilities of the plane projections of
the hippopede and the great celestial circles on the enoptron, the latter ones
appearing as a family of arcs of circles through the points of support of the
enoptron and corresponding to the visible parts of the great circles above
the horizon. By their means several focal observations can be made. But
the arachne also provides an instrumental solution to central problems of
ancient mathematics other than so far discussed. For instance, Eudoxus’s
problem of the combined spherical motions can be divided into two parts
(usually called, after Neugebauer, «the normal forms») which can be solved
simultaneously. One concerns the determination of a rectangle with a given
area by means of the measuring unit of the instrument, another the preserv-
ing of the sum or difference of the sides of the rectangle fixed. Especially, in
the case where the auxiliary parameter n=1, the «curved line» known from
the extraction of all cubic roots (x*:y® = x2 4 y?) accounts for the second
condition. The measuring unit ensures correspondence between reasoning
and reality.

Part of the task consists of keeping the areas of the changing rectangles
unaltered. In so doing, an apex of the rectangles, produced by the measuring
unit, draws a hyperbola. But one of these rectangles is a square. Hence the

kinds, odd and even, with a third, even-odd, arising from a mixture of the two; and
of each kind there are many forms». This mixture may have been referred to in Plato’s
blending of the strange ingredients of the «material» of the world-soul in the Timaeus,
35a. The distinctions between prime, relatively prime and composite integers, and the
«odds» and «evens» generating Pythagoren triples, suggest themselves.
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arachne can be used in finding the dynamis, the quadratic value of a rectan-
gle [12]. Moreover, even the problem known as the «application of the area»
can be solved, and in this solution a parabola will be produced. And, indeed,
we are told that Eudoxus’s pupil Meneachmus invented the «conic sections».
More likely, though, the use of the arachne suggested the hyperbola and the
parabola without any cones. But of course the circular mirror plate of the
instrument can also be used to demonstrate the circular section of various
cones, the right cone among them.

The upshot of all these «optical solutions» and visible demonstrations,
in the last analysis, may be epistemological®. As Arpad Szab has shown,
the very terms for proof in Greek mathematics derive from «showing» an-
«demonstration», and we meet this older idea of proof applied to pedago-
gics in Plato (e.g. in the Meno). In Eudoxus, the optical resources are presu-
mably utilized in the first place in the heuristics. But also the «eye-witness
quality» of the Greek concept of knowledge should be borne in mind. Perhaps
the arachne and the world-soul were not primarily conceived of as instru-
ments or machines, but rather as m od el s. If so, they provided models both
for the geocentric system and for epistemology in general [5,6]. Eudoxus’s
arachne seems to be the mundune counter part of Plato’s cosmic computer,
the world-soul.

(IV) Finally, the dynamic character of all these approximative methods
manifest in the use of the arachne, akin to the Pythagorean methods of
approximation to surds and their generalizations [12], point towards the
«less respectable» tradition of the ancient mathematics represented by Archi-
medes, Heron and Diophantus, although their beginning may be seen in the
finding of the dynamis, the quadratic value of a rectangle. If so, they moti-
vate a re-examination of the modern evaluation of the relation between the
axiomatic and instrumental methods in Greek mathematics. For these
approximative instrumental methods induce a dynamic world-view which
stands for the best inventive powers of the Greeks an their exact science.

The Eclipse and the Corona.

The accuracy of Eudoxus’s observations was eclipsed by Hipparchus's,
his «curved lines» by Menaechmus’s discovery of the curves we call the

10. This would not lack an antecedent, for in a fragment Philolaus says much the
same of the gnomon: «number makes all things knowable and mutually agreeing in the
way characteristic of the gnomon», Boeckh, Philolaos des Pythagoreers Lehren, pp.
141, 144. In Plato, again, in the fully developed doctrine of the receptacle space, mirrors
have a similar epistemological réle, and the receptacle itself is compared to a mirror.
Perhaps the diagram in [S] will illustrate the case.
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conic sections, his methods of invention by Archimedes's kindred methods,
and his arachne by the astrolabe of the Alexandrian astronomers. But owing
to these lost achievements’ solid foundation on mathematical principles, we
still discern their corona in Eudoxus's extant mathematical, astronomical
and geographical results. It is from these results that our reconstruction of
Eudoxus’s methods and observational techniques has been built.

Hence our reconstruction of the arachne is a tribute to Eudoxus’s
praxis, deeply ingrained in theory yet capable of giving rise to a concrete,
instrumental aid to invention and observation. Eudoxus’s Protophysik 1s
oriented towards geometry and his logic of discovery towards approxima-
tive methods. On the other hand, his observations are theory-informed and
the most characteristic feature of his geometry and methods of proof (includ-
ing the method of exhaustion) is their orientation towards motion. True,
we could say that one function of the arachne alone, its use as a comput-
ing machine in the extraction of approximations to square and cubic roots,
admits of a fairly safe dating. The other functions discussed belong to the
desiderata. They would have been useful in Eudoxus’s observations, but
apart from such remarks as those of Plutarch, Eutocius, Hipparchus and
Vitruvius, we know little about his instruments and techniques of observa-
tion. Yet, and this is the hallmark of the professional, of the «man of
science if there ever was one», given one and the same instrument and
one and the same method of computation, the expert is bound to investi-
gate the whole compass of their applicability and draw the most immedi-
ate inferences from their use.

We may rest assured, therefore, that a mathematician of Eudoxus’s
competence investigated what else could be achieved by means of the same
instrument that served so excellently in obtaining a practical solution to the
problem of the two mean proportionals. Contrariwise, we can safely assume
that an astronomer of Eudoxus’s calibre also investigated other aspects
than the observational of his astronomical instruments. For the very praxis
of instruments and tools may teach the hand to continue the work of the
intellect, presupposing that the instruments and tools have been construct-
ed on sound, prolific theories.

Now we must emphasize that our reconstruction, too, is based on theo-
retical considerations of Eudoxus's work. These in turn are based on a
series of studies in Plato’s Timaeus, referred to in [1-12]. But the further we
have proceeded, the more we have also gained feed-back that reinforces the
previous, at times tentative results. Take for instance the philosophical and
philological study of Plato’s agalma. Starting from Platonic premisses it
pointed out the remarkable role ofa rotating model ascribed to the
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World-Soul in the T'imaeus It is a model that fully corresponds to physical
reality at given times only. On the other hand, the reconstruction of Eudoxus’s
methods of computation in astronomy [8,9], being a study in the history of
the exact sciences and starting from Eudoxan premisses, led to exactly the
same concept of a model. And in the structure of the arachne we have a con-
crete manifestation of this concept, just as the usages of this instrument
reflect not only Eudoxus’s method of exhaustion and the Pythagorean appro-
ximative method, but finally also Plato’s view on language (as described in E.
Maula, On the Semantics of Time in Plato’s Timaeus, «Acta Acad. Aboen-
sis», Ser. B, Tom. 169,1, 1970). That these results, obtained from fairly
divergent premisses, tend to converge towards a new synthesis of the ancient
scientific world-view, cannot be mere coincidence. For just as it was the case
with our reconstruction of Eudoxus’s cosmological system, there are too
many exact parameter values deduced from the relatively few known values
by one and the same method and constituting a sound logical system, to be
explained away by mere chance.

Nay, the arachne reconstructed here stands at the watershed between
theory and praxis, between proof and heuristics, between the axiomatic
method and the methods of invention, between geometrical and numerical
analysis, between rational and irrational numbers, and between the static
and dynamic world-views. But owing to the depth of Eudoxus’s insight,
these seemingly opposite traditions unite. The approximative and the exact,
the practical and the theoretical, turn out to be two aspects of the same synthe-
sis, which is the bearing force behind Eudoxus’s lasting contribution to the
development of mathematical analysis. The arachne is a «living statue» just
as Plato's agalma, a paradigm of radiant ingenium commemorating the
interdisciplinary approach of Eudoxus, attested also by his inquiries into
the interrelation of astronomy and music (Theon Smyrn., p. 61 Hiller).
For the arachne, in contradistinction to the ruler and compasses which
already had undergone a metamorphosis into idealized symbolic instruments,
has preserved the heuristical pregnancy of a mathematical tool invented by
a homo ludens. However, the enoptron reflecting the physical reality and
the measuring unit’s manipulations ensuring that the laws of thought corre-
spond to physical laws, the arachne is also a powerful answer to Zeno’s
paradoxes.

Finally, despite the fact that the arachne is a theoretical reconstruction,
we would not be over much surprised even if a concrete remnant of the
instrument (perhaps the emoptron, possibly classified as «a mirror with
mathematical and astronomical decorations») were rediscovered. Such a
finding, indeed, would contribute to our better understanding of the begin-
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nings of the geometry of motion and the geometrical treatment of time. For

the arachne is, of course, a plane projection of the pivotal features of the
ever rotating spheres*.

* Note added to the proof: In August, 1976, on a voyage to Cnidus, we received
a miraculous message from the Cnidian Aphrodite through Professor Iris Cornelia Love,
American archaeologist who has excavated a «temple of Aphrodite» exhibiting several
unique features, and in its vicinity, other scientific instruments. This «temple» in fact is
an accurate copy, sixty times magnified, of the arachne —even the gnomon at the centre
was there, excavated in situ. And moreover, the auxiliary trank, the dioptra, of bronze,
had been found— tentatively classified as «a kev to the gate of the temple». These exci-
ting finds, however, deserve a new paper. One first report is [13]. According to Profes-
sor Love, these finds and the whole town-plan very likely are due to Eudoxus.

TO MPQTO IN'QNIOMETPO I'TA TH METPHXZH
TON OYPANIQN Z®AIPQON. H «<-APAXNH» TOY EYAO=Z0Y

Mepiinyn.

‘H perétn adt arnotelel avabewpnuévn xkai yevikevpévn napovciacn
tfig dvaxoivdoews mov Eyive o0 «Aebvig Zovédpro yua tnv iotopia Tiig
Metprioeng xai 10 poélo TdV Kavovev Tng otov moArtiopo» (Bovoaneotn,
"Anpilioc 1976). To yevikd Oépa tod Tuvedpiov mepidpioe TV @vakoivoon
otV apyaidtarn iotopia tijg perpioewg yovidv. Ol @ilocopikég Emi-
ntdoElS T TeXVIKTG TV peTpfoewv, moL dvaildovrar £6d, d&v ouvlntn-
Onkav 610 cuvEdpro. TNV mepiinyn aLTT] CUYKEQUAUIOVOUE TOLS OUAAO-
yiopolg, moL pic @dNynoav otV avakatackevn tijg «apayvnsy, tod Kvpiov
opyavov petpiioeng yovidv tol EbdOEov. Zuvpumepacpatika mpoonabolpe
va deifope ndg \| péBodog ol ypnowponoteital otd dpyavo abtd EyKaivid-
Cer ma véa duvapikn avriinyn tol xKoopov.

"Qc apetnpia otiv Epevvad pag mnpape TN «peyain appovia» tod IMAa-
tovos otov Tiluao, pg Paon v OmdBeon o611 10 oikodounua tic wuxfic
100 x6opov cuvvapporoyndnke eite pé mhaioclo avaeopic 10 KOCHOAOYIKO
ovotnua to0 E0806Eov eite mpowbavias; 10 ocbotnua abtod. LTT) CLVELEWM
avaxaloyape 6t N Tipn tijic AoEdoewg tfig ExAeinTikiig, oL Y pnopuonoinoce
6 Miarov xai mbavidg 6 Eldofog, elval x@rwg pukpotepn ano tnv npaypa-
ukn tpf. ‘H dwnicteon, éu f| upn tiic Aokbdoewg tob IMharwvog elye
npaypotika ypnoiporoindf kai and tov Ebdofo, Evioydetar and 1t perémn
tfic pebddov, oL ypnoiponoiel yia va mpoodiopiln 10 YEQYPUPIKO TAATOS.

‘H ypnowonoinon tod véou avtod otoiyeiov Enétpeye v dvacivieon
{17 ®IAOZO®IA 5-6
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tfic pebodov UmoAoyiopod tol EbdoEov otic mhavntikég Bewpieg Tov Kt Gxo-
un otig pebddovg avarivoews xai ovvbéocewg xabog xai ¢ Eva oLoLddEg
rapaktnpronkod tijg evpetikiic tov pebddov. To clotnua tod Evd6Eov kai
1N yoxn 1od x6cpov, v onoia 6 IMAatev cvykpivel pé dyaiua, topovoid-
Couv 1a 1d1a YapaKInPLoTIKA €I T WPOTLURME TOLG, MOU GviamokKpivovial
anoAVTA OTT QUOLIKT] TPAYHATIKOTNTA, HOVOV Op®S OE dedOpEvoug Y pOVoLC.
[IEpa and v aovvéyela adth, 10 cbotnua tod EVd6Eov, nod avacuviica-
pe, EEnyel mAfpog pé apetnpia tig yvootéc neprodovg tot Evd6Eov nepio-
o0tepeg and £xatd GAleg xUpleg mapapéTpovg tijc Koopoloyiag Tov.

I'vopilovrag, Aowndv, &t oty Abon 100 npofifpatog 1@v cuvdvacué-
vov o@aipik®v kiwvijoeov 0 Ebdofog énétuxe OLeieg ywvieg HETPOUHEVES
HE TNV E@amtopévn HIOAV YOVIAV, GVOKATACKEVACUUE TNV «apayxvny, mov
HETPE Tig YOVieg Kat avtd toOv Tpomo. ‘H «apayvny pumopel axoéun va ypnot-
poron0f] ya tov mpoodiopiopnd ol yewypapixod TAATOVS, COUPOVE PE TH
uebodo tob EbdoEov, kai yia v éfaywyn TeTpayovikdv Kai xufikdv pildv.
Lg pua TPooeEKTIKOTEPT Gvaivon tfic duvatdtntag moL dvagépape televtaia,
arodeikvoetar 6t | apayvn €Enyel v érovopalopevn Miateviky Adon
o10 ntpdfAnua tdv 800 péowv avardyov kai pia edpetikn pébodo tob Ev-
060Eov, moL cuverdyetal T YPNON TOV «KOuUTOLA®V YPauudV» Kai mov dava-
eéper O EvtoKiog. Autég Asttovpyolv Omwg 1 Pondntikn mapapetpog otV
alyePpikn Avon 1ol npoPAfpatog 1@V cuVELACUEVOV CQRULPIKDY KIVI|CEOV.
To ovunépacpa eivar 611 1| «apayvn» pe 16 va elval Eva cvykekpipuévo Tpo-
tono 1ol yempetpikod cvotnuatos (6nwg akpifdg N yuyn tod kéopov 100
[MAatovog elvar 10 peta@opikd mpdtumd tng) eikovoypagsl toLg TpOmMI-
KoUG, TOV lonuepivo, v ExkAewntikn, tov peonuPpivo xai ta ionuepiva
onueia.

‘O duvapikog yapaktipag, 1€Aog, OAwv avtdv t@v pebodov mpooey-
yioewg, moL elval pavepég ot xpion Tiig apayvng, ocvyyevikég pé tic nuba-
yopereg pebodovg mPooeyyicews TOV ACUPHETPOV Ap1Budv xai TV YEVIKED-
oe®V NG, OTPEPOLV TTV TPOCOYT] MPOS TN Aryotepo OpbBodoin mapddoon
v apyaiov pabnpatikdv, molv avunpocorsvdnkav ard tov "Apyundn,
tov "Hpova xai 1ov Aré@avro, dv xai 1 apyn toug uropel va aviyvevdi] oty
elpeon tfig duvapews, tv devtepoPabuia tipn Evog dpboywviov. "Av elval
Etol, 6Aa abdta mapakivolv yia pia émaveiétaon Tiic VEOTEPNS EKTIUTCE®DS
¢ oyxtoemg petalu tfic aliwpatnikiic pedddov kai tijg ypnoews dpyaveov
ota EéAAnvika MabBnpanika. INati adtég ol «Evopyavecy pébodor mpooey-
yicewg ocvvendyovrar pua duvapikn avriinyn tod xdopov, mob Exopalet
i3 Mo dnpovpyikeg duvaperg tdv “EAAfvov oty Oetikt] émotiun toug.

(Metagpaon M. Apayava - Movayov).



